Grain Refinement and Deformation Mechanisms in Room Temperature Severe Plastic Deformed Mg-AZ31
暂无分享,去创建一个
[1] E. Moeller. Magnesium und seine Legierungen , 2013 .
[2] H. Zbib,et al. Microstructural Analysis of Severe Plastic Deformed Twin Roll Cast AZ31 for the Optimization of Superplastic Properties , 2013 .
[3] J. Eckert,et al. Processing of Intermetallic Titanium Aluminide Wires , 2013 .
[4] J. Fundenberger,et al. Room temperature equal-channel angular pressing of a magnesium alloy , 2013 .
[5] P. Lejček,et al. Twin nucleation at grain boundaries in Mg–3 wt.% Al–1 wt.% Zn alloy processed by equal channel angular pressing , 2012 .
[6] Börje Johansson,et al. Determining the minimum grain size in severe plastic deformation process via first-principles calculations , 2012 .
[7] M. Celikin,et al. Study on edge cracking and texture evolution during 150 °C rolling of magnesium alloys: The effects of axial ratio and grain size , 2012 .
[8] H. Zurob,et al. RECRYSTALLIZATION NUCLEATION SITES IN DEFORMED AZ31 , 2012 .
[9] D. Seifert,et al. Ti-Al Composite Wires with High Specific Strength , 2011 .
[10] S. Suwas,et al. Room-temperature equal channel angular extrusion of pure magnesium , 2010 .
[11] Tadanobu Inoue,et al. Strengthening Mg–Al–Zn alloy by repetitive oblique shear strain with caliber roll , 2010 .
[12] Y. Nishida,et al. Improving both strength and ductility of a Mg alloy through a large number of ECAP passes , 2009 .
[13] T. Al-Samman. Comparative study of the deformation behavior of hexagonal magnesium–lithium alloys and a conventional magnesium AZ31 alloy , 2009 .
[14] C. Tomé,et al. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet , 2008 .
[15] N. Stanford,et al. Observation of {1121} twinning in a Mg-based alloy , 2008 .
[16] M. Barnett,et al. Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy , 2008 .
[17] M. Barnett. Twinning and the ductility of magnesium alloys Part I: “Tension” twins , 2007 .
[18] I. Alexandrov,et al. Severely Plastically Deformed Ti from the Standpoint of Texture Changes , 2005 .
[19] T. Langdon,et al. Production of Superplastic Mg Alloys Using Severe Plastic Deformation , 2005 .
[20] J. Blandin,et al. Microstructure Refinement and Improvement of Mechanical Properties of a Magnesium Alloy by Severe Plastic Deformation , 2005 .
[21] I. Procházka,et al. Dependence of Thermal Stability of Ultra Fine Grained Metals on Grain Size , 2005 .
[22] M. Pérez-Prado,et al. Grain refinement of Mg¿Al¿Zn alloys via accumulative roll bonding , 2004 .
[23] E. Doege,et al. Deformation of Magnesium , 2004 .
[24] R. Valiev. Paradoxes of Severe Plastic Deformation , 2003 .
[25] T. Langdon,et al. The use of severe plastic deformation for microstructural control , 2002 .
[26] C. Tomé,et al. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y , 2001 .
[27] Hiroyuki Watanabe,et al. Deformation mechanism in a coarse-grained Mg–Al–Zn alloy at elevated temperatures , 2001 .
[28] O. Sitdikov,et al. Evolution of the microstructure and mechanisms of formation of new grains upon severe plastic deformation of the 2219 aluminum alloy , 2001 .
[29] R. Valiev,et al. Bulk nanostructured materials from severe plastic deformation , 2000 .
[30] V. Stolyarov,et al. A two step SPD processing of ultrafine-grained titanium , 1999 .
[31] F. J. Humphreys,et al. Recrystallization and Related Annealing Phenomena , 1995 .
[32] H. Gleiter. The mechanism of grain boundary migration , 1969 .
[33] Günter Wassermann,et al. Texturen metallischer Werkstoffe , 1962 .
[34] J. E. Dorn,et al. ON THE THERMALLY ACTIVATED MECHANISM OF PRISMATIC SLIP IN MAGNESIUM SINGLE CRYSTALS. Technical Report No. 7 , 1960 .
[35] N. Grant,et al. Creep Deformation of Magnesium at Elevated Temperatures Nonbasal Slip , 1955 .
[36] W. Ziegler,et al. Magnesium und seine Legierungen , 1939 .