Grain Refinement and Deformation Mechanisms in Room Temperature Severe Plastic Deformed Mg-AZ31

A Ti-AZ31 composite was severely plastically deformed by rotary swaging at room temperature up to a logarithmic deformation strain of 2.98. A value far beyond the forming limit of pure AZ31 when being equivalently deformed. It is observed, that the microstructure evolution in Mg-AZ31 is strongly influenced by twinning. At low strains the {1011} (1012) and the {1012} (1011) twin systems lead to fragmentation of the initial grains. Inside the primary twins, grain refinement takes place by dynamic recrystallization, dynamic recovery and twinning. These mechanisms lead to a final grain size of ≈1 μm, while a strong centered ring fibre texture is evolved.

[1]  E. Moeller Magnesium und seine Legierungen , 2013 .

[2]  H. Zbib,et al.  Microstructural Analysis of Severe Plastic Deformed Twin Roll Cast AZ31 for the Optimization of Superplastic Properties , 2013 .

[3]  J. Eckert,et al.  Processing of Intermetallic Titanium Aluminide Wires , 2013 .

[4]  J. Fundenberger,et al.  Room temperature equal-channel angular pressing of a magnesium alloy , 2013 .

[5]  P. Lejček,et al.  Twin nucleation at grain boundaries in Mg–3 wt.% Al–1 wt.% Zn alloy processed by equal channel angular pressing , 2012 .

[6]  Börje Johansson,et al.  Determining the minimum grain size in severe plastic deformation process via first-principles calculations , 2012 .

[7]  M. Celikin,et al.  Study on edge cracking and texture evolution during 150 °C rolling of magnesium alloys: The effects of axial ratio and grain size , 2012 .

[8]  H. Zurob,et al.  RECRYSTALLIZATION NUCLEATION SITES IN DEFORMED AZ31 , 2012 .

[9]  D. Seifert,et al.  Ti-Al Composite Wires with High Specific Strength , 2011 .

[10]  S. Suwas,et al.  Room-temperature equal channel angular extrusion of pure magnesium , 2010 .

[11]  Tadanobu Inoue,et al.  Strengthening Mg–Al–Zn alloy by repetitive oblique shear strain with caliber roll , 2010 .

[12]  Y. Nishida,et al.  Improving both strength and ductility of a Mg alloy through a large number of ECAP passes , 2009 .

[13]  T. Al-Samman Comparative study of the deformation behavior of hexagonal magnesium–lithium alloys and a conventional magnesium AZ31 alloy , 2009 .

[14]  C. Tomé,et al.  Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet , 2008 .

[15]  N. Stanford,et al.  Observation of {1121} twinning in a Mg-based alloy , 2008 .

[16]  M. Barnett,et al.  Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy , 2008 .

[17]  M. Barnett Twinning and the ductility of magnesium alloys Part I: “Tension” twins , 2007 .

[18]  I. Alexandrov,et al.  Severely Plastically Deformed Ti from the Standpoint of Texture Changes , 2005 .

[19]  T. Langdon,et al.  Production of Superplastic Mg Alloys Using Severe Plastic Deformation , 2005 .

[20]  J. Blandin,et al.  Microstructure Refinement and Improvement of Mechanical Properties of a Magnesium Alloy by Severe Plastic Deformation , 2005 .

[21]  I. Procházka,et al.  Dependence of Thermal Stability of Ultra Fine Grained Metals on Grain Size , 2005 .

[22]  M. Pérez-Prado,et al.  Grain refinement of Mg¿Al¿Zn alloys via accumulative roll bonding , 2004 .

[23]  E. Doege,et al.  Deformation of Magnesium , 2004 .

[24]  R. Valiev Paradoxes of Severe Plastic Deformation , 2003 .

[25]  T. Langdon,et al.  The use of severe plastic deformation for microstructural control , 2002 .

[26]  C. Tomé,et al.  Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y , 2001 .

[27]  Hiroyuki Watanabe,et al.  Deformation mechanism in a coarse-grained Mg–Al–Zn alloy at elevated temperatures , 2001 .

[28]  O. Sitdikov,et al.  Evolution of the microstructure and mechanisms of formation of new grains upon severe plastic deformation of the 2219 aluminum alloy , 2001 .

[29]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[30]  V. Stolyarov,et al.  A two step SPD processing of ultrafine-grained titanium , 1999 .

[31]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[32]  H. Gleiter The mechanism of grain boundary migration , 1969 .

[33]  Günter Wassermann,et al.  Texturen metallischer Werkstoffe , 1962 .

[34]  J. E. Dorn,et al.  ON THE THERMALLY ACTIVATED MECHANISM OF PRISMATIC SLIP IN MAGNESIUM SINGLE CRYSTALS. Technical Report No. 7 , 1960 .

[35]  N. Grant,et al.  Creep Deformation of Magnesium at Elevated Temperatures Nonbasal Slip , 1955 .

[36]  W. Ziegler,et al.  Magnesium und seine Legierungen , 1939 .