The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation

[1]  S. Crawford,et al.  Volume 1 , 2012, Journal of Diabetes Investigation.

[2]  D. Dutykh,et al.  PRACTICAL USE OF VARIATIONAL PRINCIPLES FOR MODELING WATER WAVES , 2010, 1002.3019.

[3]  Stéphane Popinet,et al.  Quadtree-adaptive tsunami modelling , 2011 .

[4]  Rodrigo Cienfuegos,et al.  The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations , 2011 .

[5]  T. Katsaounis,et al.  Dispersive wave runup on non-uniform shores , 2011, 1101.1729.

[6]  D. Lannes,et al.  A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model , 2010, J. Comput. Phys..

[7]  D. Lannes,et al.  Numerical Simulation of Strongly Nonlinear and Dispersive Waves Using a Green–Naghdi Model , 2010, J. Sci. Comput..

[8]  Denys Dutykh,et al.  Finite volume schemes for dispersive wave propagation and runup , 2010, J. Comput. Phys..

[9]  D. Dutykh,et al.  Horizontal displacements contribution to tsunami wave energy balance , 2010 .

[10]  F. Dias,et al.  On the use of the finite fault solution for tsunami generation problems , 2010, 1008.2742.

[11]  Frédéric Dias,et al.  On the fully-nonlinear shallow-water generalized Serre equations , 2010 .

[12]  Denys Dutykh,et al.  Influence of sedimentary layering on tsunami generation , 2008, 0806.2929.

[13]  Jean-Michel Ghidaglia,et al.  A two-fluid model for violent aerated flows , 2008, 0806.0757.

[14]  Jean-Philippe Braeunig The International Journal on Finite Volumes , 2010 .

[15]  F. Dias,et al.  A Study of the Tsunami Effects of Two Landslides in the St. Lawrence Estuary , 2010 .

[16]  Yasuhiro Yamada,et al.  Submarine Mass Movements and Their Consequences , 2010 .

[17]  D. Dutykh Visco-potential free-surface flows and long wave modelling , 2009 .

[18]  Philippe Bonneton,et al.  Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation , 2009 .

[19]  Denys Dutykh,et al.  Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting , 2007, Math. Comput. Simul..

[20]  J. Fenton,et al.  Coastal and Ocean Engineering , 2009 .

[21]  Per A. Madsen,et al.  On the solitary wave paradigm for tsunamis , 2008 .

[22]  Denys Dutykh,et al.  Energy of tsunami waves generated by bottom motion , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  J. Ghidaglia,et al.  A compressible two-fluid model for the finite volume simulation of violent aerated flows. Analytical properties and numerical results , 2008, 0805.2457.

[24]  David L. George,et al.  Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation , 2008, J. Comput. Phys..

[25]  Jean-Michel Ghidaglia,et al.  Simulation of Free Surface Compressible Flows Via a Two Fluid Model , 2008, ArXiv.

[26]  Nikolaos A. Kampanis,et al.  A robust high‐resolution finite volume scheme for the simulation of long waves over complex domains , 2008 .

[27]  Joseph B. Hughes School of Civil and Environmental Engineering Strategic Plan: The Path Through 2011 , 2008 .

[28]  Amir Etemad-Shahidi,et al.  Applied Ocean Research , 2022 .

[29]  D. Dutykh Mathematical modelling of tsunami waves , 2007 .

[30]  Pavel Tkalich,et al.  Tsunami propagation modelling – a sensitivity study , 2007 .

[31]  Stephan T. Grilli,et al.  Modeling the 26 December 2004 Indian ocean tsunami : Case study of impact in Thailand - art. no. C07024 , 2007 .

[32]  Yong-Sik Cho,et al.  Propagation and run-up of nearshore tsunamis with HLLC approximate Riemann solver , 2007 .

[33]  Denys Dutykh,et al.  Viscous potential free-surface flows in a fluid layer of finite depth , 2007, 0705.1281.

[34]  Philippe Bonneton,et al.  A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II : boundary conditions and validation , 2007 .

[35]  Denys Dutykh,et al.  Dissipative Boussinesq equations , 2007 .

[36]  Pierre Fabrie,et al.  Evaluation of well‐balanced bore‐capturing schemes for 2D wetting and drying processes , 2007 .

[37]  D. Dutykh,et al.  Water waves generated by a moving bottom , 2006, physics/0611228.

[38]  F. Dias,et al.  Comparison between three-dimensional linear and nonlinear tsunami generation models , 2006, physics/0611140.

[39]  Costas E. Synolakis,et al.  NOAA Technical Memorandum OAR PMEL-135 STANDARDS, CRITERIA, AND PROCEDURES FOR NOAA EVALUATION OF TSUNAMI NUMERICAL MODELS , 2007 .

[40]  F. Dias,et al.  Linear theory of wave generation by a moving bottom , 2006, physics/0611182.

[41]  Patrick J. Lynett,et al.  Nearshore Wave Modeling with High-Order Boussinesq-Type Equations , 2006 .

[42]  Fayssal Benkhaldoun,et al.  A Non Homogeneous Riemann Solver for shallow water and two phase flows , 2006 .

[43]  Philippe Bonneton,et al.  A fourth‐order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq‐type equations. Part I: model development and analysis , 2006 .

[44]  Costas E Synolakis,et al.  Tsunami science before and beyond Boxing Day 2004 , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  Jostein R. Natvig,et al.  Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows , 2006, J. Comput. Phys..

[46]  Kwok Fai Cheung,et al.  Well-Balanced Finite-Volume Model for Long-Wave Runup , 2006 .

[47]  R. LeVeque,et al.  FINITE VOLUME METHODS AND ADAPTIVE REFINEMENT FOR GLOBAL TSUNAMI PROPAGATION AND LOCAL INUNDATION. , 2006 .

[48]  David L. George,et al.  Finite volume methods and adaptive refinement for tsunami propagation and inundation , 2006 .

[49]  Manuel Jesús Castro Díaz,et al.  Available Online at Www.sciencedirect.com Mathematical and So,snos ~__d,~ot" Computer Modelling the Numerical Treatment of Wet/dry Fronts in Shallow Flows: Application to One-layer and Two-layer Systems , 2022 .

[50]  Emmanuel Audusse,et al.  A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes , 2005 .

[51]  C. Synolakis India must cooperate on tsunami warning system , 2005, Nature.

[52]  Jean-Michel Ghidaglia,et al.  The normal flux method at the boundary for multidimensional finite volume approximations in CFD , 2005 .

[53]  T. Barth,et al.  Finite Volume Methods: Foundation and Analysis , 2004 .

[54]  James E. Morrow The University of Washington , 2004 .

[55]  E. Barthélemy,et al.  Nonlinear Shallow Water Theories for Coastal Waves , 2004 .

[56]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[57]  Chi-Wang Shu,et al.  Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.

[58]  F. Archambeau,et al.  Code Saturne: A Finite Volume Code for the computation of turbulent incompressible flows - Industrial Applications , 2004 .

[59]  B. Sapoval,et al.  Self-stabilized fractality of seacoasts through damped erosion. , 2003, Physical review letters.

[60]  Emmanuel Audusse,et al.  Modélisation hyperbolique et analyse numérique pour les écoulements en eaux peu profondes , 2004 .

[61]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[62]  D. Bresch,et al.  Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model , 2003 .

[63]  Sung-Eun Kim,et al.  A Multi-Dimensional Linear Reconstruction Scheme for Arbitrary Unstructured Mesh , 2003 .

[64]  Bram van Leer,et al.  Upwind and High-Resolution Methods for Compressible Flow: From Donor Cell to Residual-Distribution Schemes , 2003 .

[65]  H. Schäffer,et al.  Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[66]  T. Gallouët,et al.  Some approximate Godunov schemes to compute shallow-water equations with topography , 2003 .

[67]  Vasily V. Titov,et al.  Real-Time Tsunami Forecasting: Challenges and Solutions , 2003 .

[68]  Patrick J. Lynett,et al.  Analytical solutions for forced long waves on a sloping beach , 2003, Journal of Fluid Mechanics.

[69]  Harry Yeh,et al.  Tsunami run-up and draw-down on a plane beach , 2003, Journal of Fluid Mechanics.

[70]  Arno Schouwenburg,et al.  European Journal of Mechanics B/Fluids and ScienceDirect , 2003 .

[71]  Derek M. Causon,et al.  Numerical solutions of the shallow water equations with discontinuous bed topography , 2002 .

[72]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[73]  J.-M. Ghidaglia FLUX SCHEMES FOR SOLVING NONLINEAR SYSTEMS OF CONSERVATION LAWS , 2001 .

[74]  Jean-Michel Ghidaglia,et al.  On the numerical solution to two fluid models via a cell centered finite volume method , 2001 .

[75]  Maurizio Brocchini,et al.  An efficient solver for nearshore flows based on the WAF method , 2001 .

[76]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[77]  Etsuko Yamada COASTAL , 2020, Ecological Restoration.

[78]  P. García-Navarro,et al.  On numerical treatment of the source terms in the shallow water equations , 2000 .

[79]  Derek M. Causon,et al.  Calculation of shallow water flows using a Cartesian cut cell approach , 2000 .

[80]  M. Vázquez-Cendón Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels with Irregular Geometry , 1999 .

[81]  A. Leroux,et al.  Riemann Solvers for some Hyperbolic Problems with a Source Term , 1999 .

[82]  Jean-Antoine Désidéri,et al.  Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes , 1998 .

[83]  Per A. Madsen,et al.  Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves , 1997 .

[84]  S. Muzaferija,et al.  Finite-Volume CFD Procedure and Adaptive Error Control Strategy for Grids of Arbitrary Topology , 1997 .

[85]  Derek M. Causon,et al.  On the Choice of Wavespeeds for the HLLC Riemann Solver , 1997, SIAM J. Sci. Comput..

[86]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[87]  K. Anastasiou,et al.  SOLUTION OF THE 2D SHALLOW WATER EQUATIONS USING THE FINITE VOLUME METHOD ON UNSTRUCTURED TRIANGULAR MESHES , 1997 .

[88]  D. Kröner Numerical Schemes for Conservation Laws , 1997 .

[89]  James T. Kirby,et al.  A Fourier-Chebyshev collocation method for the shallow water equations including shoreline runup , 1997 .

[90]  C. Goto Numerical method of tsunami simulation with the leap-frog scheme , 1997 .

[91]  Gerald Hebenstreit Perspectives on Tsunami Hazard Reduction , 1997 .

[92]  Hidee Tatehata,et al.  The New Tsunami Warning System of the Japan Meteorological Agency , 1997 .

[93]  Gerald T. Hebenstreit,et al.  Perspectives on tsunami hazard reduction : observations, theory and planning , 1997 .

[94]  Vasily Titov,et al.  Implementation and testing of the Method of Splitting Tsunami (MOST) model , 1997 .

[95]  Jean-Michel Ghidaglia,et al.  Une méthode volumes finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation , 1996 .

[96]  Eleuterio F. Toro,et al.  Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems , 1995 .

[97]  B. Henderson-Sellers,et al.  Mathematics and Computers in Simulation , 1995 .

[98]  Patrick Bar-Avi,et al.  Water Waves: The Mathematical Theory with Application , 1995 .

[99]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[100]  Thomas B. Gatski,et al.  Turbulence and combustion , 1994 .

[101]  Pilar García-Navarro,et al.  A HIGH-RESOLUTION GODUNOV-TYPE SCHEME IN FINITE VOLUMES FOR THE 2D SHALLOW-WATER EQUATIONS , 1993 .

[102]  Julyan H. E. Cartwright,et al.  THE DYNAMICS OF RUNGE–KUTTA METHODS , 1992 .

[103]  E. F. Toro,et al.  Riemann problems and the WAF method for solving the two-dimensional shallow water equations , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[104]  R. LeVeque Approximate Riemann Solvers , 1992 .

[105]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[106]  Todd E. Peterson,et al.  A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation , 1991 .

[107]  John H. Argyris,et al.  Computer Methods in Applied Mechanics and Engineering , 1990 .

[108]  Vincenzo Casulli,et al.  Semi-implicit finite difference methods for the two-dimensional shallow water equation , 1990 .

[109]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[110]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[111]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[112]  D. Holmes,et al.  Solution of the 2D Navier-Stokes equations on unstructured adaptive grids , 1989 .

[113]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[114]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[115]  S. F. Davis Simplified second-order Godunov-type methods , 1988 .

[116]  Paul Glaister Approximate Riemann solutions of the shallow water equations , 1988 .

[117]  R. Lathe Phd by thesis , 1988, Nature.

[118]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[119]  D Mawson,et al.  Shock waves. , 1985, Nursing times.

[120]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[121]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[122]  D. H. Peregrine,et al.  Surf and run-up on a beach: a uniform bore , 1979, Journal of Fluid Mechanics.

[123]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[124]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[125]  R. Frosch Ocean engineering , 1972 .

[126]  M. Nicholas,et al.  Coastal engineering. , 1969, Science.

[127]  D. Peregrine Long waves on a beach , 1967, Journal of Fluid Mechanics.

[128]  Physics Letters , 1962, Nature.

[129]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[130]  J. J. Stoker Water Waves: The Mathematical Theory with Applications , 1957 .

[131]  J. Meigs,et al.  WHO Technical Report , 1954, The Yale Journal of Biology and Medicine.

[132]  F. Serre,et al.  CONTRIBUTION À L'ÉTUDE DES ÉCOULEMENTS PERMANENTS ET VARIABLES DANS LES CANAUX , 1953 .

[133]  W. Bowen,et al.  Philadelphia , 1892 .

[134]  Eric F Darve,et al.  Author ' s personal copy A hybrid method for the parallel computation of Green ’ s functions , 2009 .