10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub‐Cells

Polymer tandem solar cells with 10.2% power conversion efficiency are demonstrated via stacking two PDTP-DFBT:PC₇₁ BM bulk heterojunctions, connected by MoO₃/PEDOT:PSS/ZnO as an interconnecting layer. The tandem solar cells increase the power conversion efficiency of the PDTP-DFBT:PC₇₁ BM system from 8.1% to 10.2%, successfully demonstrating polymer tandem solar cells with identical sub-cells of double-digit efficiency.

[1]  A. Kahn,et al.  Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications , 2012, Advanced materials.

[2]  Jens Meyer,et al.  MoO3 Films Spin‐Coated from a Nanoparticle Suspension for Efficient Hole‐Injection in Organic Electronics , 2011, Advanced materials.

[3]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[4]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[5]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[6]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[7]  Mm Martijn Wienk,et al.  Solution‐Processed Organic Tandem Solar Cells , 2006 .

[8]  Wei You,et al.  Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. , 2011, Journal of the American Chemical Society.

[9]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[10]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[11]  Yang Yang,et al.  A Metal‐Oxide Interconnection Layer for Polymer Tandem Solar Cells with an Inverted Architecture , 2011, Advanced materials.

[12]  Fengxian Xie,et al.  Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells , 2012, Advanced materials.

[13]  Jan Gilot,et al.  Optimizing Polymer Tandem Solar Cells , 2010, Advanced materials.

[14]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[15]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[16]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[17]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[18]  J. Shim,et al.  Studies of the optimization of recombination layers for inverted tandem polymer solar cells , 2012 .

[19]  P. Blom,et al.  Enhanced efficiency in double junction polymer : fullerene solar cells , 2010 .

[20]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[21]  Gang Li,et al.  Surface Plasmon and Scattering‐Enhanced Low‐Bandgap Polymer Solar Cell by a Metal Grating Back Electrode , 2012 .

[22]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[23]  Christoph J. Brabec,et al.  Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact , 2006 .

[24]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[25]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[26]  Yang Yang,et al.  A Robust Inter‐Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells , 2011, Advanced materials.

[27]  John R. Reynolds,et al.  Dithienogermole as a fused electron donor in bulk heterojunction solar cells. , 2011, Journal of the American Chemical Society.

[28]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.

[29]  Dimitar I. Kutsarov,et al.  Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells , 2012 .

[30]  Christoph J. Brabec,et al.  Organic tandem solar cells: A review , 2009 .

[31]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[32]  A. Jen,et al.  Solution processed inverted tandem polymer solar cells with self-assembled monolayer modified interfacial layers , 2010 .

[33]  Guo-Qiang Lo,et al.  Inverted tandem organic solar cells with a MoO3/Ag/Al/Ca intermediate layer , 2010 .

[34]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[35]  Luping Yu,et al.  Metal Oxide Nanoparticles as an Electron‐Transport Layer in High‐Performance and Stable Inverted Polymer Solar Cells , 2012, Advanced materials.