Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas

Plasmonic nanoantennas provide unprecedented opportunities to concentrate light fields in subwavelength-sized volumes. By placing a nonlinear dielectric nanoparticle in such a hot spot, one can hope to take advantage of both the field enhancement provided by nanoantennas and the large, nonlinear optical susceptibility of dielectric nanoparticles. To test this concept, we combine gold gap nanoantennas with second-order, nonlinear zinc sulfide nanoparticles, and perform second harmonic generation (SHG) spectroscopy on the combined hybrid dielectric/plasmonic nanoantennas as well as on the individual constituents. We find that SHG from the bare gold nanoantennas, even though it should be forbidden due to symmetry reasons, is several orders of magnitude larger than that of the bare zinc sulfide nanoparticles. Even stronger second harmonic signals are generated by the hybrid dielectric/plasmonic nanoantennas. Control experiments with nanoantennas containing linear lanthanum fluoride nanoparticles reveal; however, that the increased SHG efficiency of the hybrid dielectric/plasmonic nanoantennas does not depend on the nonlinear optical susceptibility of the dielectric nanoparticles but is an effect of the modification of the dielectric environment. The combination of a hybrid dielectric/plasmonic nanoantenna, which is only resonant for the incoming pump light field, with a second nanoantenna, which is resonant for the generated second harmonic light, allows for a further increase in the efficiency of SHG. As the second nanoantenna mediates the coupling of the second harmonic light to the far field, this double-resonant approach also provides us with control over the polarization of the generated light.

[1]  Heinrich Hertz,et al.  Ueber sehr schnelle electrische Schwingungen , 1887 .

[2]  Henry Jasik,et al.  Antenna engineering handbook , 1961 .

[3]  G. D. Boyd,et al.  Resonant optical second harmonic generation and mixing , 1966 .

[4]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[5]  Robert L. Byer,et al.  Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO/sub 3/ external resonant cavities , 1988 .

[6]  R. Kallenbach,et al.  Doubly-resonant second-harmonic generation in β-barium-borate , 1989 .

[7]  R. Paschotta,et al.  Highly efficient frequency doubling with a doubly resonant monolithic total-internal-reflection ring resonator. , 1993, Optics letters.

[8]  M. Fejer Nonlinear Optical Frequency Conversion , 1994 .

[9]  J. Hupp,et al.  Enormous Hyper-Rayleigh Scattering from Nanocrystalline Gold Particle Suspensions , 1998 .

[10]  A. A. Kaminskii,et al.  Second optical harmonic generation in nonlinear crystals with a disordered domain structure , 2001 .

[11]  E. Rosencher,et al.  Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials , 2004, Nature.

[12]  S. Skipetrov,et al.  Nonlinear optics: Disorder is the new order , 2004, Nature.

[13]  Rongchao Jin,et al.  Correlating second harmonic optical responses of single Ag nanoparticles with morphology. , 2005, Journal of the American Chemical Society.

[14]  S. Brasselet,et al.  Balanced homodyne detection of second-harmonic generation from isolated subwavelength emitters , 2006 .

[15]  X. Vidal,et al.  Generation of light in media with a random distribution of nonlinear domains. , 2006, Physical review letters.

[16]  S. Brasselet,et al.  Balanced homodyne detection in second-harmonic generation microscopy , 2006, physics/0604125.

[17]  Yu Hang Leung,et al.  Optical properties of ZnO nanostructures. , 2006, Small.

[18]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[19]  Peter J. Pauzauskie,et al.  Tunable nanowire nonlinear optical probe , 2007, Nature.

[20]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[21]  Y. Mugnier,et al.  Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy , 2007 .

[22]  Stephan W. Koch,et al.  Classical theory for second-harmonic generation from metallic nanoparticles. Phys Rev B 79:235109 , 2008, 0807.3575.

[23]  Kurt Busch,et al.  Discontinuous Galerkin time-domain computations of metallic nanostructures. , 2009, Optics express.

[24]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[25]  Dan Oron,et al.  Second-harmonic generation from a single core/shell quantum dot. , 2009, Small.

[26]  Demetri Psaltis,et al.  Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging. , 2009, Optics express.

[27]  A. Majchrowski,et al.  Femtosecond nonlinear frequency conversion based on BiB3O6 , 2010 .

[28]  Pierre-François Brevet,et al.  Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. , 2010, Nano letters.

[29]  D. Psaltis,et al.  Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. , 2010, Physical review letters.

[30]  Pablo M. Jais,et al.  Plasmon-enhanced second harmonic generation in semiconductor quantum dots close to metal nanoparticles , 2011, 1106.2253.

[31]  Lukas Novotny,et al.  Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. , 2012, Physical review letters.

[32]  C. Argyropoulos,et al.  Enhanced nonlinearities using plasmonic nanoantennas , 2012 .

[33]  T. Meier,et al.  Collective effects in second-harmonic generation from split-ring-resonator arrays , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[34]  Christine Galez,et al.  Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility. , 2012, ACS nano.

[35]  U. Chettiar,et al.  Optical Frequency Mixing Through Nanoantenna Enhanced Difference Frequency Generation: Metatronic Mixer , 2012 .

[36]  Simon Rivier,et al.  Enhanced second-harmonic generation from double resonant plasmonic antennae. , 2012, Optics express.

[37]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[38]  J. Kiessling CW laser light tunable from blue to red : OPOs pave the way , 2013 .

[39]  Mohsen Rahmani,et al.  University of Birmingham Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna , 2016 .

[40]  Harald Giessen,et al.  Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. , 2014, Nano letters.

[41]  S. Linden,et al.  High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR. , 2014, Optics express.

[42]  S. Maier,et al.  High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer. , 2014, Nano letters.

[43]  Capturing the optical phase response of nanoantennas by coherent second-harmonic microscopy. , 2014, Nano letters.

[44]  Carsten Rockstuhl,et al.  Nonlinear plasmonic antennas , 2014 .

[45]  Lea Fleischer,et al.  Antenna Engineering Handbook , 2016 .