Communication-Optimal Convolutional Neural Nets

Efficiently executing convolutional neural nets (CNNs) is important in many machine-learning tasks. Since the cost of moving a word of data, either between levels of a memory hierarchy or between processors over a network, is much higher than the cost of an arithmetic operation, minimizing data movement is critical to performance optimization. In this paper, we present both new lower bounds on data movement needed for CNNs, and optimal sequential algorithms that attain these lower bounds. In most common cases, our optimal algorithms can attain significantly more data reuse than matrix multiplication.

[1]  Stefán Ingi Valdimarsson The Brascamp–Lieb Polyhedron , 2010, Canadian Journal of Mathematics.

[2]  M. Morari,et al.  Geometric Algorithm for Multiparametric Linear Programming , 2003 .

[3]  Nicholas Knight,et al.  Communication-Optimal Loop Nests , 2015 .

[4]  Manfred Morari,et al.  Multiparametric Linear Programming with Applications to Control , 2007, Eur. J. Control.

[5]  James Demmel,et al.  Minimizing Communication in Numerical Linear Algebra , 2009, SIAM J. Matrix Anal. Appl..

[6]  M. D. Wilkinson,et al.  Management science , 1989, British Dental Journal.

[7]  Jacob Scott,et al.  An I/O-Complexity Lower Bound for All Recursive Matrix Multiplication Algorithms by Path-Routing , 2015 .

[8]  Tor Arne Johansen,et al.  A METHOD FOR OBTAINING CONTINUOUS SOLUTIONS TO MULTIPARAMETRIC LINEAR PROGRAMS , 2005 .

[9]  Dror Irony,et al.  Communication lower bounds for distributed-memory matrix multiplication , 2004, J. Parallel Distributed Comput..

[10]  Dimitri Jeltsema,et al.  IFAC Proceedings Volumes , 2008 .

[11]  James Demmel,et al.  Parallelepipeds obtaining HBL lower bounds , 2016, ArXiv.

[12]  James Demmel,et al.  Communication lower bounds and optimal algorithms for programs that reference arrays - Part 1 , 2013, ArXiv.

[13]  T. Gál,et al.  Multiparametric Linear Programming , 1972 .

[14]  ToledoSivan,et al.  Communication lower bounds for distributed-memory matrix multiplication , 2004 .

[15]  Jared Mauldin,et al.  CALIFORNIA , 2019, Madroño.

[16]  Katherine Yelick,et al.  On Holder-Brascamp-Lieb inequalities for torsion-free discrete Abelian groups , 2015, 1510.04190.

[17]  H. T. Kung,et al.  I/O complexity: The red-blue pebble game , 1981, STOC '81.