暂无分享,去创建一个
[1] Stefán Ingi Valdimarsson. The Brascamp–Lieb Polyhedron , 2010, Canadian Journal of Mathematics.
[2] M. Morari,et al. Geometric Algorithm for Multiparametric Linear Programming , 2003 .
[3] Nicholas Knight,et al. Communication-Optimal Loop Nests , 2015 .
[4] Manfred Morari,et al. Multiparametric Linear Programming with Applications to Control , 2007, Eur. J. Control.
[5] James Demmel,et al. Minimizing Communication in Numerical Linear Algebra , 2009, SIAM J. Matrix Anal. Appl..
[6] M. D. Wilkinson,et al. Management science , 1989, British Dental Journal.
[7] Jacob Scott,et al. An I/O-Complexity Lower Bound for All Recursive Matrix Multiplication Algorithms by Path-Routing , 2015 .
[8] Tor Arne Johansen,et al. A METHOD FOR OBTAINING CONTINUOUS SOLUTIONS TO MULTIPARAMETRIC LINEAR PROGRAMS , 2005 .
[9] Dror Irony,et al. Communication lower bounds for distributed-memory matrix multiplication , 2004, J. Parallel Distributed Comput..
[10] Dimitri Jeltsema,et al. IFAC Proceedings Volumes , 2008 .
[11] James Demmel,et al. Parallelepipeds obtaining HBL lower bounds , 2016, ArXiv.
[12] James Demmel,et al. Communication lower bounds and optimal algorithms for programs that reference arrays - Part 1 , 2013, ArXiv.
[13] T. Gál,et al. Multiparametric Linear Programming , 1972 .
[14] ToledoSivan,et al. Communication lower bounds for distributed-memory matrix multiplication , 2004 .
[15] Jared Mauldin,et al. CALIFORNIA , 2019, Madroño.
[16] Katherine Yelick,et al. On Holder-Brascamp-Lieb inequalities for torsion-free discrete Abelian groups , 2015, 1510.04190.
[17] H. T. Kung,et al. I/O complexity: The red-blue pebble game , 1981, STOC '81.