Passivation techniques for InAs/GaSb strained layer superlattice detectors

InAs/(In,Ga)Sb Strained Layer Superlattices (SLSs) have made significant progress since they were first proposed as an infrared (IR) sensing material more than three decades ago. The basic material properties of SLS provide a prospective benefit in the realization of IR imagers with suppressed interband tunneling and Auger recombination processes, as well as high quantum efficiency and responsivity. With scaling of single pixel dimensions, the performance of focal plane arrays is strongly dependent on surface effects due to the large pixels’ surface/volume ratio. This article discusses the cause of surface leakage currents and various approaches of their reduction including dielectric passivation, passivation with organic materials (polyimide or various photoresists), passivation by overgrowth of wider bandgap material, and chalcogenide passivation. Performance of SLS detectors passivated by different techniques and operating in various regions of infrared spectrum has been compared.

[1]  I. Lindau,et al.  Vacuum ultraviolet photoelectron spectroscopy of (NH4)2S‐treated GaAs (100) surfaces , 1989 .

[2]  Elena Plis,et al.  Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers , 2010 .

[3]  R. N. Singh Mercury cadmium telluride infrared detector development in India: status and issues , 2009, Defense + Commercial Sensing.

[4]  Edward H. Aifer,et al.  Passivation of GaSb and InAs by pH-activated thioacetamide , 2009 .

[5]  S D Gunapala,et al.  Demonstration of a 1024 $\times$ 1024 Pixel InAs–GaSb Superlattice Focal Plane Array , 2010, IEEE Photonics Technology Letters.

[6]  G. P. Schwartz,et al.  Analysis of native oxide films and oxide-substrate reactions on III–V semiconductors using thermochemical phase diagrams , 1983 .

[7]  G. Turner,et al.  Visualizing interfacial structure at non-common-atom heterojunctions with cross-sectional scanning tunneling microscopy. , 2000, Physical review letters.

[8]  L. Esaki InAs-GaSb superlattices-synthesized semiconductors and semimetals , 1981 .

[9]  Manijeh Razeghi,et al.  Elimination of surface leakage in gate controlled type-II InAs/GaSb mid-infrared photodetectors , 2011 .

[10]  Vishnu Gopal,et al.  A general relation between zero-bias resistance - area product and perimeter-to-area ratio of the diodes in variable-area diode test structures , 1996 .

[11]  M. Shaw,et al.  Improving the process capability of SU-8 , 2003 .

[12]  John W. Little,et al.  Addressing surface leakage in type-II InAs/GaSb superlattice materials using novel approaches to surface passivation , 2011, Optical Engineering + Applications.

[13]  Jeffrey H. Warner,et al.  Graded band gap for dark-current suppression in long-wave infrared W-structured type-II superlattice photodiodes , 2006 .

[14]  D. Ting,et al.  A high-performance long wavelength superlattice complementary barrier infrared detector , 2009 .

[15]  Christoph H. Grein,et al.  Reply to ‘‘Comment on ‘Temperature limits on infrared detectivities of InAs/InxGa1−xSb superlattices and bulk Hg1−xCdxTe’ ’’ [J. Appl. Phys. 80, 2542 (1996)] , 1995 .

[16]  Darryl L. Smith,et al.  Proposal for strained type II superlattice infrared detectors , 1987 .

[17]  Gail J. Brown,et al.  GaSb for passivating type-II InAs/GaSb superlattice mesas , 2010 .

[18]  Philippe Christol,et al.  Surface passivation of GaInAsSb photodiodes with thioacetamide , 2007 .

[19]  Yajun Wei,et al.  Passivation of type II InAs/GaSb superlattice photodiodes , 2003 .

[20]  Jeffrey H. Warner,et al.  Shallow-Etch Mesa Isolation of Graded-Bandgap “W”-Structured Type II Superlattice Photodiodes , 2010 .

[21]  Manijeh Razeghi,et al.  Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K , 2008 .

[23]  Philippe Christol,et al.  Characterization of midwave infrared InAs/GaSb superlattice photodiode , 2009 .

[24]  Lloyd J. Whitman,et al.  Chemical and electronic properties of sulfur-passivated InAs surfaces , 2003 .

[25]  G. Nordin,et al.  Compact and low loss silicon-on-insulator rib waveguide 90° bend , 2006 .

[26]  Peter P. Chow,et al.  Improvement of R0A product of type-II InAs/GaSb superlattice MWIR/LWIR photodiodes , 2009 .

[27]  Sang Jun Lee,et al.  Electrochemical sulphur passivation of InAs/GaSb strain layer superlattice detectors , 2006 .

[28]  Jerry R. Meyer,et al.  AUGER LIFETIME ENHANCEMENT IN INAS-GA1-XINXSB SUPERLATTICES , 1994 .

[29]  Manijeh Razeghi,et al.  On the performance and surface passivation of type II InAs∕GaSb superlattice photodiodes for the very-long-wavelength infrared , 2005 .

[30]  Arezou Khoshakhlagh,et al.  Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation , 2010 .

[31]  A. Rogalski Infrared detectors: status and trends , 2003 .

[32]  H. S. Kim,et al.  Type II InAs∕GaSb strain layer superlattice detectors with p-on-n polarity , 2007 .

[33]  Yajun Wei,et al.  Near bulk-limited R0A of long-wavelength infrared type-II InAs/GaSb superlattice photodiodes with polyimide surface passivation , 2007 .

[34]  M. Lebedev,et al.  Sulfide passivation of III-V semiconductor surfaces: role of the sulfur ionic charge and of the reaction potential of the solution , 1998 .

[35]  Ron Kaspi,et al.  Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs–GaSb type-II superlattices , 2001 .

[36]  Partha S. Dutta,et al.  Sulphur passivation of gallium antimonide surfaces , 1994 .

[37]  S. J. Pearton,et al.  Etching of As- and P-based III–V semiconductors in a planar inductively coupled BCl3/Ar plasma , 2004 .

[38]  M. Gendry,et al.  Oxides on GaAs and InAs surfaces: An x-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers. , 1994, Physical review. B, Condensed matter.

[39]  Michael A. Kinch Fundamental physics of infrared detector materials , 2000 .

[40]  Yajun Wei,et al.  Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 μm , 2002 .

[41]  M. Oshima,et al.  Universal Passivation Effect of (NH4)2Sx Treatment on the Surface of III-V Compound Semiconductors , 1991 .

[42]  Elena Plis,et al.  Electrical Characterization of Different Passivation Treatments for Long-Wave Infrared InAs/GaSb Strained Layer Superlattice Photodiodes , 2009 .

[43]  T. Kuech,et al.  Chemical and structural characterization of GaSb(100) surfaces treated by HCl-based solutions and annealed in vacuum , 2003 .

[44]  E. Costard,et al.  Enhanced quantum well infrared photodetector focal plane arrays for space applications , 2009 .

[45]  Manijeh Razeghi,et al.  Spatial Noise and Correctability of Type-II InAs/GaSb Focal Plane Arrays , 2010, IEEE Journal of Quantum Electronics.

[46]  Elena Plis,et al.  Passivation of long-wave infrared InAs/GaSb strained layer superlattice detectors , 2011 .

[47]  Alexander Soibel,et al.  A super-pixel QWIP focal plane array for imaging multiple waveband temperature sensor , 2009 .

[48]  T. Kuech,et al.  A comparative study of GaSb (100) surface passivation by aqueous and nonaqueous solutions , 2003 .

[49]  Amitava DasGupta,et al.  Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment , 2004 .

[50]  G. M. Williams Comment on ‘‘Temperature limits on infrared detectivities of InAs/InxGa1−xSb superlattices and bulk HgxCd1−xTe’’ [J. Appl. Phys. 74, 4774 (1993)] , 1995 .

[51]  C. Kim,et al.  Surface treatment effects on the electrical properties of the interfaces between ZnS and LPE-grown Hg0.7Cd0.3Te , 1998 .

[52]  Gusev,et al.  Sulfide-passivated GaAs (001). II. Electronic properties. , 1996, Physical review. B, Condensed matter.

[53]  Jun Huang,et al.  Surface study of thioacetamide and zinc sulfide passivated long wavelength infrared type-II strained layer superlattice , 2011, Defense + Commercial Sensing.

[54]  F J Blanco,et al.  Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps. , 2005, Lab on a chip.

[55]  Elena Plis,et al.  Reduction of surface leakage current in InAs/GaSb strained layer long wavelength superlattice detectors using SU-8 passivation , 2010 .

[56]  D. Yoon,et al.  PECVD SiO2 and SiON films dependant on the rf bias power for low-loss silica waveguide , 2005 .

[57]  Mikhail V. Lebedev,et al.  Chalcogenide passivation of III–V semiconductor surfaces , 1998 .

[58]  Elena Plis,et al.  Ultralow noise midwave infrared InAs–GaSb strain layer superlattice avalanche photodiode , 2007 .

[59]  M. N. Kutty,et al.  Study of Surface Treatments on InAs/GaSb Superlattice LWIR Detectors , 2010 .

[60]  Philippe Christol,et al.  Wet etching and chemical polishing of InAs/GaSb superlattice photodiodes , 2009 .

[61]  Joel N. Schulman,et al.  Infrared optical characterization of InAs/Ga1−xInxSb superlattices , 1990 .

[62]  Gail J. Brown Type-II InAs/GaInSb superlattices for infrared detection: an overview , 2005, SPIE Defense + Commercial Sensing.

[63]  S. Krishna,et al.  Study of Short- and Long-Term Effectiveness of Ammonium Sulfide as Surface Passivation for InAs/GaSb Superlattices Using X-Ray Photoelectron Spectroscopy , 2010 .

[64]  Yajun Wei,et al.  Passivation of type-II InAs∕GaSb double heterostructure , 2007 .

[65]  B. Lambert,et al.  Passivation of GaSb by sulfur treatment , 1994 .

[66]  M. Mavrikakis,et al.  Modifications of the electronic structure of GaSb surface by chalcogen atoms: S, Se, and Te , 2004 .

[67]  Yajun Wei,et al.  Ammonium sulfide passivation of Type-II InAs/GaSb superlattice photodiodes , 2004 .

[68]  Jean-Paul Chamonal,et al.  HgCdTe APD-focal plane array performance at DEFIR , 2009, Defense + Commercial Sensing.

[69]  L. Esaki,et al.  A new semiconductor superlattice , 1977 .

[70]  M. Razeghi,et al.  Uncooled operation of type-II InAs∕GaSb superlattice photodiodes in the midwavelength infrared range , 2005 .

[71]  M. S. Hegde,et al.  Structure and stability of passivating arsenic sulfide phases on GaAs surfaces , 1989 .

[72]  Manijeh Razeghi,et al.  Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes , 2009 .

[73]  Antoni Rogalski,et al.  HgCdTe infrared detector material: history, status and outlook , 2005 .

[74]  M. Lebedev,et al.  Sulfidization of GaAs in alcoholic solutions: a method having an impact on efficiency and stability of passivation , 1997 .

[75]  Manijeh Razeghi,et al.  Inductively coupled plasma etching and processing techniques for type-II InAs/GaSb superlattices infrared detectors toward high fill factor focal plane arrays , 2009, OPTO.

[76]  Antoni Rogalski,et al.  Third-generation infrared photon detectors , 2003 .

[77]  Seung-Jae Lee,et al.  Enhanced optical characteristics of light emitting diodes by surface plasmon of Ag nanostructures , 2011, OPTO.

[78]  Alexander Soibel,et al.  Low dark current long-wave infrared InAs/GaSb superlattice detectors , 2010 .

[79]  Christoph H. Grein,et al.  Theoretical performance of very long wavelength InAs/InxGa1−xSb superlattice based infrared detectors , 1994 .

[80]  Ohno,et al.  First-principles study of sulfur passivation of GaAs(001) surfaces. , 1990, Physical review. B, Condensed matter.

[81]  S. Mallick,et al.  Midwavelength Infrared Avalanche Photodiode Using InAs–GaSb Strain Layer Superlattice , 2007, IEEE Photonics Technology Letters.

[82]  Martin Walther,et al.  Passivation of InAs∕(GaIn)Sb short-period superlattice photodiodes with 10μm cutoff wavelength by epitaxial overgrowth with AlxGa1−xAsySb1−y , 2005 .