FALDOI: Large Displacement Optical Flow by Astute Initialization

We propose a large displacement optical flow method that introduces a new strategy to compute a good local minimum of any optical flow energy functional. The method requires a given set of discrete matches, which can be extremely sparse, and an energy functional. The matches are used to guide a structured coordinate-descent of the energy functional around these keypoints. It results in a two-step minimization method at the finest scale which is very robust to the inevitable outliers of the sparse matcher, and it is better than the multi- scale methods, especially when there are small objects with very large displacements, that the multi-scale methods are incapable to find. Indeed, the proposed method recovers the correct motion field of any object which has at least one correct match, regardless of the magnitude of the displacement. We validate our proposal using several optical flow variational models. The results consistently outperform the coarse-to-fine approaches and achieve good qualitative and quantitative performance on the standard optical flow benchmarks.

[1]  Daniel Cremers,et al.  Large displacement optical flow computation withoutwarping , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[2]  Long Quan,et al.  Match Propagation for Image-Based Modeling and Rendering , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[4]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[5]  Luc Van Gool,et al.  Sparse Flow: Sparse Matching for Small to Large Displacement Optical Flow , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[6]  Stefano Soatto,et al.  Sparse Occlusion Detection with Optical Flow , 2012, International Journal of Computer Vision.

[7]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[8]  Michael J. Black,et al.  A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them , 2013, International Journal of Computer Vision.

[9]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Cristian Sminchisescu,et al.  Efficient Closed-Form Solution to Generalized Boundary Detection , 2012, ECCV.

[11]  KweonIn So,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006 .

[12]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[13]  Yasuyuki Matsushita,et al.  Motion detail preserving optical flow estimation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Rachid Deriche,et al.  Symmetrical Dense Optical Flow Estimation with Occlusions Detection , 2002, ECCV.

[15]  Horst Bischof,et al.  Motion estimation with non-local total variation regularization , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Gloria Haro,et al.  A Rotation-Invariant Regularization Term for Optical Flow Related Problems , 2014, ACCV.

[17]  C. Lawrence Zitnick,et al.  Structured Forests for Fast Edge Detection , 2013, 2013 IEEE International Conference on Computer Vision.

[18]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[19]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[21]  Yasuyuki Matsushita,et al.  Motion detail preserving optical flow estimation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Christian Heipke,et al.  Discrete Optimization for Optical Flow , 2015, GCPR.

[23]  S. Osher,et al.  A new median formula with applications to PDE based denoising , 2009 .

[24]  Daniel Cremers,et al.  Convex Relaxation of Vectorial Problems with Coupled Regularization , 2014, SIAM J. Imaging Sci..

[25]  Rudolf Mester,et al.  Illumination-Robust Dense Optical Flow Using Census Signatures , 2011, DAGM-Symposium.

[26]  Vladlen Koltun,et al.  Efficient Nonlocal Regularization for Optical Flow , 2012, ECCV.

[27]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Daniel Cremers,et al.  Advanced Data Terms for Variational Optic Flow Estimation , 2009, VMV.

[29]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[30]  Hans-Peter Seidel,et al.  Complementary Optic Flow , 2009, EMMCVPR.

[31]  Cristian Sminchisescu,et al.  Locally Affine Sparse-to-Dense Matching for Motion and Occlusion Estimation , 2013, 2013 IEEE International Conference on Computer Vision.

[32]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[33]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[34]  Camillo J. Taylor,et al.  Optical Flow with Geometric Occlusion Estimation and Fusion of Multiple Frames , 2015, EMMCVPR.

[35]  Horst Bischof,et al.  A Duality Based Approach for Realtime TV-L1 Optical Flow , 2007, DAGM-Symposium.

[36]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[37]  Hailin Jin,et al.  Fast Edge-Preserving PatchMatch for Large Displacement Optical Flow , 2014, CVPR.

[38]  Jiaolong Yang,et al.  Dense, accurate optical flow estimation with piecewise parametric model , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Cordelia Schmid,et al.  EpicFlow: Edge-preserving interpolation of correspondences for optical flow , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Fridtjof Stein,et al.  Efficient Computation of Optical Flow Using the Census Transform , 2004, DAGM-Symposium.

[41]  Joachim Weickert,et al.  Why Is the Census Transform Good for Robust Optic Flow Computation? , 2013, SSVM.

[42]  Ives Rey-Otero,et al.  Anatomy of the SIFT Method , 2014, Image Process. Line.

[43]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[44]  Juho Kannala,et al.  Quasi-Dense Wide Baseline Matching Using Match Propagation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[46]  Patrick Bouthemy,et al.  Aggregation of local parametric candidates with exemplar-based occlusion handling for optical flow , 2014, Comput. Vis. Image Underst..

[47]  Antoni Buades,et al.  Reliable multi-scale and multi-window stereo matching , 2015 .

[48]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[50]  Didier Stricker,et al.  Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[51]  Cordelia Schmid,et al.  DeepFlow: Large Displacement Optical Flow with Deep Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[52]  Ying Wu,et al.  Large Displacement Optical Flow from Nearest Neighbor Fields , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Joachim Weickert,et al.  Reliable Estimation of Dense Optical Flow Fields with Large Displacements , 2000, International Journal of Computer Vision.

[54]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[55]  Konrad Schindler,et al.  An Evaluation of Data Costs for Optical Flow , 2013, GCPR.

[56]  Agustín Salgado de la Nuez,et al.  Preserving accurate motion contours with reliable parameter selection , 2014, ICIP.

[57]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Optic Flow in Harmony Optic Flow in Harmony Optic Flow in Harmony , 2022 .

[58]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Highly Accurate Optic Flow Computation with Theoretically Justified Warping Highly Accurate Optic Flow Computation with Theoretically Justified Warping , 2022 .

[59]  Vanel A. Lazcano,et al.  A TV-L1 Optical Flow Method with Occlusion Detection , 2012, DAGM/OAGM Symposium.

[60]  Thomas Pock,et al.  Non-local Total Generalized Variation for Optical Flow Estimation , 2014, ECCV.