The Foundation Supernova Survey Motivation, design, implementation, and first data release

© 2017 The Author(s). The Foundation Supernova Survey aims to provide a large, high-fidelity, homogeneous, and precisely calibrated low-redshift Type Ia supernova (SN Ia) sample for cosmology. The calibration of the current low-redshift SN sample is the largest component of systematic uncertainties for SN cosmology, and new data are necessary to make progress. We present the motivation, survey design, observation strategy, implementation, and first results for the Foundation Supernova Survey. We are using the Pan-STARRS telescope to obtain photometry for up to 800 SNe Ia at z>~0.1. This strategy has several unique advantages: (1) the Pan-STARRS system is a superbly calibrated telescopic system, (2) Pan-STARRS has observed 3/4 of the sky in grizyP1 making future template observations unnecessary, (3) we have a well-tested data-reduction pipeline, and (4) we have observed ~3000 high-redshift SNe Ia on this system. Here, we present our initial sample of 225 SN Ia grizP1light curves, of which 180 pass all criteria for inclusion in a cosmological sample. The Foundation Supernova Survey already contains more cosmologically useful SNe Ia than all other published low-redshift SN Ia samples combined. We expect that the systematic uncertainties for the Foundation Supernova Sample will be two to three times smaller than other low-redshift samples.We find that our cosmologically useful sample has an intrinsic scatter of 0.111 mag, smaller than other low-redshift samples. We perform detailed simulations showing that simply replacing the current low-redshift SN Ia sample with an equally sized Foundation sample will improve the precision on the dark energy equation-of-state parameter by 35 per cent, and the dark energy figure of merit by 72 per cent.

[1]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[2]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[3]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[4]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[5]  Christopher W. Stubbs,et al.  Toward More Precise Survey Photometry for PanSTARRS and LSST: Measuring Directly the Optical Transmission Spectrum of the Atmosphere , 2007, 0708.1364.

[6]  S. Jha Type Iax Supernovae , 2017, 1707.01110.

[7]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[8]  R. Foley THE RELATION BETWEEN EJECTA VELOCITY, INTRINSIC COLOR, AND HOST-GALAXY MASS FOR HIGH-REDSHIFT TYPE Ia SUPERNOVAE , 2012, 1202.0003.

[9]  Nicholas B. Suntzeff,et al.  THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2009, 0910.3330.

[10]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: LIGHT-CURVE FITTING WITH SNooPy , 2010, 1010.4040.

[11]  A. Pastorello,et al.  SYSTEMATIC UNCERTAINTIES ASSOCIATED WITH THE COSMOLOGICAL ANALYSIS OF THE FIRST PAN-STARRS1 TYPE Ia SUPERNOVA SAMPLE , 2013, 1310.3824.

[12]  R. J. Wainscoat,et al.  Pan-STARRS Photometric and Astrometric Calibration , 2016, The Astrophysical Journal Supplement Series.

[13]  Stefano Casertano,et al.  A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER , 2009, 0905.0695.

[14]  P. Astier,et al.  The brighter-fatter effect and pixel correlations in CCD sensors , 2014, 1402.0725.

[15]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[16]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[17]  A. Rest,et al.  Simulations of the WFIRST Supernova Survey and Forecasts of Cosmological Constraints , 2017, The Astrophysical Journal.

[18]  E. Ofek,et al.  Near-infrared observations of Type Ia supernovae: the best known standard candle for cosmology , 2012, 1204.2308.

[19]  M. Sullivan,et al.  SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.

[20]  P. A. Price,et al.  THE PAN-STARRS 1 PHOTOMETRIC REFERENCE LADDER, RELEASE 12.01 , 2013, 1303.3634.

[21]  Armin Rest,et al.  COLOR DISPERSION AND MILKY-WAY-LIKE REDDENING AMONG TYPE Ia SUPERNOVAE , 2013, 1306.4050.

[22]  BVRI Light Curves for 29 Type Ia Supernovae , 1996, astro-ph/9609064.

[23]  Wendy L. Freedman,et al.  Report of the Dark Energy Task Force , 2006, astro-ph/0609591.

[24]  A. Pastorello,et al.  COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.

[25]  T. Grav,et al.  PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY , 2012, 1201.2208.

[26]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[27]  Kevin Krisciunas,et al.  THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE , 2009, 0910.3317.

[28]  Richard Kessler,et al.  MEASURING TYPE IA SUPERNOVA POPULATIONS OF STRETCH AND COLOR AND PREDICTING DISTANCE BIASES , 2016, 1603.01559.

[29]  Gautham Narayan,et al.  PRECISE THROUGHPUT DETERMINATION OF THE PanSTARRS TELESCOPE AND THE GIGAPIXEL IMAGER USING A CALIBRATED SILICON PHOTODIODE AND A TUNABLE LASER: INITIAL RESULTS , 2010, 1003.3465.

[30]  Christopher W. Stubbs,et al.  Addressing the Photometric Calibration Challenge: Explicit Determination of the Instrumental Response and Atmospheric Response Functions, and Tying it All Together , 2012, 1206.6695.

[31]  European Southern Observatory,et al.  A supernova distance to the anchor galaxy NGC 4258 , 2015, 1509.00507.

[32]  N. B. Suntzeff,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[33]  Kevin Krisciunas,et al.  Hubble Diagrams of Type Ia Supernovae in the Near-Infrared , 2003, astro-ph/0312626.

[34]  M. Sullivan,et al.  The dependence of Type Ia Supernovae luminosities on their host galaxies , 2010, 1003.5119.

[35]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[36]  S. E. Persson,et al.  TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION , 2012, 1212.2209.

[37]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[38]  Yun Wang,et al.  Figure of merit for dark energy constraints from current observational data , 2008, 0803.4295.

[39]  Daniel Kasen,et al.  MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES , 2010, 1011.4517.

[40]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[41]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[42]  L. Ho,et al.  The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .

[43]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[44]  R. Kirshner,et al.  Do spectra improve distance measurements of Type Ia supernovae , 2010, 1012.0005.

[45]  Adam G. Riess,et al.  THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY , 2010, 1005.4687.

[46]  Armin Rest,et al.  CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.

[47]  W. Wood-Vasey,et al.  CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE , 2012, 1205.4493.

[48]  Ralph C. Bohlin,et al.  Spectrophotometric Standards From the Far-UV to the Near-IR on the White Dwarf Flux Scale , 1996 .

[49]  Sean G. Ryan,et al.  The Advanced Maui Optical and Space Surveillance Technologies Conference , 2006 .

[50]  HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES , 2009, 0912.0929.

[51]  Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey , 2005, astro-ph/0509240.

[52]  S. Jha,et al.  Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles , 2017, 1707.00715.

[53]  J. Prieto,et al.  The Data Release of the Sloan Digital Sky Survey-II Supernova Survey , 2014, 1401.3317.

[54]  A. Riess,et al.  SUPERCAL: CROSS-CALIBRATION OF MULTIPLE PHOTOMETRIC SYSTEMS TO IMPROVE COSMOLOGICAL MEASUREMENTS WITH TYPE Ia SUPERNOVAE , 2015, 1508.05361.

[55]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[56]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[57]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[58]  Armin Rest,et al.  TOWARD A NETWORK OF FAINT DA WHITE DWARFS AS HIGH-PRECISION SPECTROPHOTOMETRIC STANDARDS , 2016, 1603.03825.

[59]  Larry Denneau,et al.  HYPERCALIBRATION: A PAN-STARRS1-BASED RECALIBRATION OF THE SLOAN DIGITAL SKY SURVEY PHOTOMETRY , 2015, 1512.01214.

[60]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[61]  S. E. Woosley,et al.  On the Origin of the Type Ia Supernova Width-Luminosity Relation , 2006, astro-ph/0609540.

[62]  Armin Rest,et al.  LIGHT CURVES OF 213 TYPE Ia SUPERNOVAE FROM THE ESSENCE SURVEY , 2016, 1603.03823.

[63]  P. Astier,et al.  COSMOLOGICAL PARAMETER UNCERTAINTIES FROM SALT-II TYPE IA SUPERNOVA LIGHT CURVE MODELS , 2014, 1401.4065.

[64]  E. Ofek,et al.  The Unique Type Ia Supernova 2000cx in NGC 524 , 2001, astro-ph/0107318.

[65]  Mohan Ganeshalingam,et al.  Berkeley Supernova Ia Program – III. Spectra near maximum brightness improve the accuracy of derived distances to Type Ia supernovae , 2012, 1202.2130.

[66]  C. Baltay,et al.  The reddening law of Type Ia Supernovae: separating intrinsic variability from dust using equivalent widths , 2011, 1103.5300.

[67]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[68]  S. Deustua,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.

[69]  Peter E. Nugent,et al.  The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star , 2006, Nature.

[70]  J. Sollerman,et al.  High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenarios , 2010, 1011.5665.

[71]  B. Gibson,et al.  Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914 , 2016, 1602.04156.

[72]  T. Pritchard,et al.  RESULTS OF THE LICK OBSERVATORY SUPERNOVA SEARCH FOLLOW-UP PHOTOMETRY PROGRAM: BVRI LIGHT CURVES OF 165 TYPE Ia SUPERNOVAE , 2010 .

[73]  Dark Energy Probes in Light of the CMB , 2004, astro-ph/0407158.

[74]  R. J. Wainscoat,et al.  Pan-STARRS Pixel Processing: Detrending, Warping, Stacking , 2016, The Astrophysical Journal Supplement Series.

[75]  P. Norberg,et al.  The Pan-STARRS1 Small Area Survey 2 , 2013, 1310.6368.

[76]  B. Madore,et al.  The Hubble Constant , 2010, 1004.1856.

[77]  J. Prieto,et al.  SUPER-CHANDRASEKHAR SNe Ia STRONGLY PREFER METAL-POOR ENVIRONMENTS , 2011, 1106.3071.

[78]  R. Kirshner,et al.  The Type Ia Supernova Color–Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model , 2016, 1609.04470.

[79]  C. Tao,et al.  A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN THE NEARBY SUPERNOVA FACTORY DATA SET , 2012, 1207.2695.

[80]  Robert P. Kirshner,et al.  VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE , 2011, 1107.3555.

[81]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[82]  W. M. Wood-Vasey,et al.  TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED , 2009, 0908.0536.

[83]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[84]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[85]  Walter A. Siegmund,et al.  Design of the Pan‐STARRS telescopes , 2004 .

[86]  Jan Peters,et al.  SN 1991bg - A type Ia supernova with a difference , 1993 .

[87]  K. Maguire,et al.  SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA , 2016, 1603.04748.

[88]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[89]  Gautham Narayan,et al.  TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED , 2010, 1011.5910.

[90]  J. Prieto,et al.  The Luminous and Carbon-rich Supernova 2006gz: A Double Degenerate Merger? , 2007, 0709.1501.

[91]  A. Rest,et al.  SPECTROSCOPY OF HIGH-REDSHIFT SUPERNOVAE FROM THE ESSENCE PROJECT: THE FIRST FOUR YEARS , 2005 .

[92]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[93]  M. Sullivan,et al.  SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.

[94]  W. M. Wood-Vasey,et al.  Extending the supernova Hubble diagram to z ~ 1.5 with the Euclid space mission , 2014, 1409.8562.

[95]  M. Sullivan,et al.  PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.

[96]  Adam A. Miller,et al.  Fourteen months of observations of the possible super-Chandrasekhar mass Type Ia Supernova 2009dc , 2010, 1003.2417.

[97]  I. Hook,et al.  The host galaxies of Type Ia supernovae discovered by the Palomar Transient Factory , 2013, 1311.6344.

[98]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[99]  Ilan Manulis,et al.  Supernova Discoveries 2010–2011: Statistics and Trends , 2011, 1103.5165.

[100]  R. Itoh,et al.  EARLY PHASE OBSERVATIONS OF EXTREMELY LUMINOUS TYPE Ia SUPERNOVA 2009dc , 2009, 0908.2059.

[101]  David O. Jones,et al.  Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters , 2017, 1710.00846.

[102]  et al,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005 .

[103]  Adam G. Riess,et al.  BVRI Light Curves for 22 Type Ia Supernovae , 1998 .

[104]  P. Astier,et al.  SALT : a spectral adaptive light curve template for type Ia supernovae , 2005 .

[105]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[106]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[107]  R. Kirshner,et al.  TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS , 2014, 1402.7079.

[108]  Adam A. Miller,et al.  CfAIR2: NEAR-INFRARED LIGHT CURVES OF 94 TYPE Ia SUPERNOVAE , 2014, 1408.0465.

[109]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[110]  D. Bersier,et al.  The ASAS-SN Bright Supernova Catalog – II. 2015 , 2016, 1704.02320.

[111]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[112]  Wendy L. Freedman,et al.  CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.

[113]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[114]  M. Sullivan,et al.  SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY , 2011, 1104.1443.

[115]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[116]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2010, 1108.3108.

[117]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .