Analytic Properties and Covariance Functions for a New Class of Generalized Gibbs Random Fields

Spartan spatial random fields (SSRFs) are generalized Gibbs random fields, equipped with a coarse-graining kernel that acts as a low-pass filter for the fluctuations. SSRFs are defined by means of physically motivated spatial interactions and a small set of free parameters (interaction couplings). This paper focuses on the fluctuation-gradient-curvature (FGC) SSRF model, henceforth referred to as FGC-SSRF. This model is defined on the Euclidean space R by means of interactions proportional to the squares of the field realizations, as well as their gradient and curvature. The permissibility criteria of FGC-SSRFs are extended by considering the impact of a finite-bandwidth kernel. It is proved that the FGC-SSRFs are almost surely differentiable in the case of finite bandwidth. Asymptotic explicit expressions for the Spartan covariance function are derived for d = 1 and d= 3; both known and new covariance functions are obtained depending on the value of the FGC-SSRF shape parameter. Nonlinear dependence of the covariance integral scale on the FGC-SSRF characteristic length is established, and it is shown that the relation becomes linear asymptotically. The results presented in this paper are useful in random field parameter inference, and in spatial interpolation of irregularly spaced samples.

[1]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[2]  Multivariate Geostatistics , 2004 .

[3]  Dionissios T. Hristopulos,et al.  Methods for generating non-separable spatiotemporal covariance models with potential environmental applications , 2004 .

[4]  Donald E. Myers,et al.  Basic Linear Geostatistics , 1998, Technometrics.

[5]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[6]  J. Jaime Gómez-Hernández,et al.  geoENV VI – Geostatistics for Environmental Applications , 2008 .

[7]  Dionissios T. Hristopulos,et al.  An application of Spartan spatial random fields in environmental mapping: focus on automatic mapping capabilities , 2008 .

[8]  Dionissios T. Hristopulos,et al.  Spartan gaussian random fields for geostatistical applications: Non-constrained simulations on square lattices and irregular grids , 2005, J. Comput. Methods Sci. Eng..

[9]  S. SIAMJ. SPARTAN GIBBS RANDOM FIELD MODELS FOR GEOSTATISTICAL APPLICATIONS∗ , 2003 .

[10]  J. Mateu,et al.  Nonseparable stationary anisotropic space–time covariance functions , 2006 .

[11]  J. Besag,et al.  On conditional and intrinsic autoregressions , 1995 .

[12]  M. Stein Space–Time Covariance Functions , 2005 .

[13]  L. Gelhar Stochastic Subsurface Hydrology , 1992 .

[14]  Paul M. Thompson,et al.  Brain structural mapping using a novel hybrid implicit/explicit framework based on the level-set method , 2005, NeuroImage.

[15]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[16]  Juan Ruiz-Alzola,et al.  Geostatistical Medical Image Registration , 2003, MICCAI.

[17]  George Christakos,et al.  Random Field Models in Earth Sciences , 1992 .

[18]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.

[19]  D. T. Hristopulos,et al.  Geostatistical Applications of Spartan Spatial Random Fields , 2008 .

[20]  T. Stephenson Image analysis , 1992, Nature.

[21]  Chang-Tsun Li,et al.  A Class of Discrete Multiresolution Random Fields and Its Application to Image Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Samuel Elogne,et al.  On the Inference of Spartan Spatial Random Field Models for Geostatistical Applications , 2006 .

[23]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[24]  Keith J. Worsley,et al.  Applications of Random Fields in Human Brain Mapping , 2001 .

[25]  Dionissios T. Hristopulos Approximate methods for explicit calculations of non-Gaussian moments , 2006 .

[26]  F. Byron,et al.  Mathematics of Classical and Quantum Physics , 1970 .

[27]  D. T. Hristopulos Spatial random field models inspired from statistical physics with applications in the geosciences , 2006 .

[28]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[29]  Dionissios T. Hristopulos,et al.  Nonparametric Identification of Anisotropic (Elliptic) Correlations in Spatially Distributed Data Sets , 2008, IEEE Transactions on Signal Processing.

[30]  S. Bochner Lectures on Fourier Integrals. (AM-42) , 1959 .

[31]  P. Kitanidis Introduction to Geostatistics: Applications in Hydrogeology , 1997 .

[32]  Gerhard Winkler,et al.  Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction , 2002 .

[33]  Dionissios T. Hristopulos Simulations of spartan random fields , 2003 .

[34]  M. Yadrenko,et al.  Explicit extrapolation formulas for correlation models of homogeneous isotropic random fields , 2004 .

[35]  C. E. Buell Correlation Functions for Wind and Geopotential on Isobaric Surfaces , 1972 .

[36]  Ted Chang,et al.  Introduction to Geostatistics: Applications in Hydrogeology , 2001, Technometrics.

[37]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[38]  Stephan R. Sain Analysis and Modelling of Spatial Environmental Data , 2006 .

[39]  Christian Lantuéjoul,et al.  Geostatistical Simulation: Models and Algorithms , 2001 .

[40]  Richard J. Smith Spatial statistics in environmental science , 2000 .

[41]  R. V. Churchill,et al.  Lectures on Fourier Integrals , 1959 .

[42]  H. Rue,et al.  Fitting Gaussian Markov Random Fields to Gaussian Fields , 2002 .

[43]  Gompper,et al.  Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  Manuel Guizar-Sicairos,et al.  Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[46]  D. Siegmund,et al.  Testing for a Signal with Unknown Location and Scale in a Stationary Gaussian Random Field , 1995 .

[47]  Leszek Wojnar,et al.  Image Analysis , 1998 .

[48]  Tian-Chyi J. Yeh,et al.  Applied Stochastic Hydrogeology. , 2005 .

[49]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[50]  N. Higham Computing real square roots of a real matrix , 1987 .

[51]  Dionissios T. Hristopulos,et al.  New anisotropic covariance models and estimation of anisotropic parameters based on the covariance tensor identity , 2002 .

[52]  Michael Edward Hohn,et al.  Geostatistics and Petroleum Geology , 1988 .