DYNAMIC DATA-DRIVEN INVERSION FOR TERASCALE SIMULATIONS: REAL-TIME IDENTIFICATION OF AIRBORNE CONTAMINANTS
暂无分享,去创建一个
George Biros | Bart G. van Bloemen Waanders | Omar Ghattas | Volkan Akcelik | Judith Hill | Andrei Draganescu | O. Ghattas | B. V. B. Waanders | G. Biros | V. Akçelik | Judith C. Hill | Andrei Draganescu
[1] J. King,et al. Multilevel algorithms for ill-posed problems , 1992 .
[2] Kevin R. Long,et al. A variational finite element method for source inversion for convective-diffusive transport , 2003 .
[3] Numerische,et al. A wavelet multilevel method for ill-posed problems stabilized by Tikhonov regularization , 1997 .
[4] William L. Briggs,et al. A multigrid tutorial , 1987 .
[5] George Biros,et al. Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..
[6] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[7] Dacian N. Daescu,et al. An adjoint sensitivity method for the adaptive location of the observations in air quality modeling , 2003 .
[8] Thomas Kaminski,et al. A coarse grid three-dimensional global inverse model of the atmospheric transport 1. Adjoint model and Jacobian matrix , 1999 .
[9] William L. Briggs,et al. A multigrid tutorial, Second Edition , 2000 .
[10] Martin Hanke,et al. Two-level preconditioners for regularized inverse problems I: Theory , 1999, Numerische Mathematik.
[11] Barbara Kaltenbacher. V-cycle convergence of some multigrid methods for ill-posed problems , 2003, Math. Comput..
[12] George Biros,et al. Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..
[13] P. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .
[14] Wolfgang Hackbusch,et al. Multigrid Methods for FEM and BEM Applications , 2004 .
[15] Marek Behr,et al. The effect of stabilization in finite element methods for the optimal boundary control of the Oseen equations , 2004 .