Neurodisruption of selective attention: insights and implications

[1]  W. James,et al.  The Principles of Psychology. , 1983 .

[2]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[3]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[4]  V. Amassian,et al.  Suppression of visual perception by magnetic coil stimulation of human occipital cortex. , 1989, Electroencephalography and clinical neurophysiology.

[5]  A. Pascual-Leone,et al.  Induction of visual extinction by rapid‐rate transcranial magnetic stimulation of parietal lobe , 1994, Neurology.

[6]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[7]  M. Gazzaniga,et al.  Transcranial magnetic stimulation: delays in visual suppression due to luminance changes. , 1996, Neuroreport.

[8]  A. Kimura,et al.  Transcranial magnetic stimulation-induced changes in EEG and responses recorded from the scalp of healthy humans. , 1997, Electroencephalography and clinical neurophysiology.

[9]  Alan Cowey,et al.  Temporal aspects of visual search studied by transcranial magnetic stimulation , 1997, Neuropsychologia.

[10]  J. Duncan,et al.  Competitive brain activity in visual attention , 1997, Current Opinion in Neurobiology.

[11]  R. Rafal,et al.  Transcranial Magnetic Stimulation of the Prefrontal Cortex Delays Contralateral Endogenous Saccades , 1997, Journal of Cognitive Neuroscience.

[12]  R. Rafal,et al.  Localization of the human frontal eye fields and motor hand area with transcranial magnetic stimulation and magnetic resonance imaging , 1998, Neuropsychologia.

[13]  A. Cowey,et al.  Task–specific impairments and enhancements induced by magnetic stimulation of human visual area V5 , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  J. Mattingley,et al.  Parietal neglect and visual awareness , 1998, Nature Neuroscience.

[15]  Alan Cowey,et al.  Cortical plasticity in perceptual learning demonstrated by transcranial magnetic stimulation , 1998, Neuropsychologia.

[16]  A. Cowey,et al.  The role of the parietal cortex in visual attention—hemispheric asymmetries and the effects of learning: a magnetic stimulation study , 1998, Neuropsychologia.

[17]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[18]  Alan Cowey,et al.  Magnetic stimulation studies of visual cognition , 1998, Trends in Cognitive Sciences.

[19]  C. Spence,et al.  Cross-modal links in exogenous covert spatial orienting between touch, audition, and vision , 1998, Perception & psychophysics.

[20]  Alan Cowey,et al.  Cortical plasticity in perceptual learning demonstrated by transcranial magnetic stimulation , 1998, Neuropsychologia.

[21]  E Corthout,et al.  Timing of activity in early visual cortex as revealed by transcranial magnetic stimulation. , 1999, Neuroreport.

[22]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[23]  Stephen G. Lomber,et al.  The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function , 1999, Journal of Neuroscience Methods.

[24]  E M Wassermann,et al.  BOLD‐f MRI response to single‐pulse transcranial magnetic stimulation (TMS) , 2000, Journal of magnetic resonance imaging : JMRI.

[25]  C. Spence,et al.  Crossmodal links between vision and touch in covert endogenous spatial attention. , 2000, Journal of experimental psychology. Human perception and performance.

[26]  M. Corbetta,et al.  Erratum to “Translocation machinery for synthesis of integral membrane and secretory proteins in dendritic spines” , 2000, Nature Neuroscience.

[27]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[28]  A. T. Smith,et al.  Attentional suppression of activity in the human visual cortex , 2000, Neuroreport.

[29]  Alan Cowey,et al.  Transcranial magnetic stimulation and cognitive neuroscience , 2000, Nature Reviews Neuroscience.

[30]  Francis McGlone,et al.  Reflexive spatial orienting of tactile attention , 2001, Experimental Brain Research.

[31]  T. Mondor,et al.  Facilitative and inhibitory effects of cuing sound duration, intensity, and timbre , 2001, Perception & psychophysics.

[32]  T Moore,et al.  Control of eye movements and spatial attention. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Complementary localization and lateralization of orienting and motor attention , 2001, Nature Neuroscience.

[34]  Á. Pascual-Leone,et al.  Enhanced visual spatial attention ipsilateral to rTMS-induced 'virtual lesions' of human parietal cortex , 2001, Nature Neuroscience.

[35]  C Caltagirone,et al.  Parieto-frontal interactions in visual-object and visual-spatial working memory: evidence from transcranial magnetic stimulation. , 2001, Cerebral cortex.

[36]  A. Cowey,et al.  The role of transcranial magnetic stimulation (TMS) in studies of vision, attention and cognition. , 2001, Acta psychologica.

[37]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[38]  Martin Eimer,et al.  Crossmodal links in spatial attention are mediated by supramodal control processes: evidence from event-related potentials. , 2002, Psychophysiology.

[39]  R. Marrocco,et al.  Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention , 2002, Experimental Brain Research.

[40]  Klaas E. Stephan,et al.  The anatomical basis of functional localization in the cortex , 2002, Nature Reviews Neuroscience.

[41]  D. Heeger,et al.  In this issue , 2002, Nature Reviews Drug Discovery.

[42]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[43]  Alvaro Pascual-Leone,et al.  Handbook of transcranial magnetic stimulation , 2002 .

[44]  T. Paus,et al.  Transcranial Magnetic Stimulation of the Human Frontal Eye Field: Effects on Visual Perception and Attention , 2002, Journal of Cognitive Neuroscience.

[45]  J. Mattingley Spatial extinction and its relation to mechanisms of normal attention , 2002 .

[46]  A. Kingstone,et al.  Topic: Cognition , 2003 .

[47]  Chi-Hung Juan,et al.  Feedback to V1: a reverse hierarchy in vision , 2003, Experimental Brain Research.

[48]  Takashi R Sato,et al.  Effects of Stimulus-Response Compatibility on Neural Selection in Frontal Eye Field , 2003, Neuron.

[49]  Leslie G. Ungerleider,et al.  Neuroimaging Studies of Attention: From Modulation of Sensory Processing to Top-Down Control , 2003, The Journal of Neuroscience.

[50]  Chi-Hung Juan,et al.  Human frontal eye fields and visual search. , 2003, Journal of neurophysiology.

[51]  Katherine M. Armstrong,et al.  Visuomotor Origins of Covert Spatial Attention , 2003, Neuron.

[52]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[53]  D. Somers,et al.  Multiple Spotlights of Attentional Selection in Human Visual Cortex , 2004, Neuron.

[54]  C. Spence,et al.  The Handbook of Multisensory Processing , 2004 .

[55]  W. Newsome,et al.  What electrical microstimulation has revealed about the neural basis of cognition , 2004, Current Opinion in Neurobiology.

[56]  Neil G. Muggleton,et al.  Timing of Target Discrimination in Human Frontal Eye Fields , 2004, Journal of Cognitive Neuroscience.

[57]  T. Moore,et al.  Microstimulation of the frontal eye field and its effects on covert spatial attention. , 2004, Journal of neurophysiology.

[58]  J. Rothwell,et al.  Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects , 2004, Biological Psychiatry.

[59]  Chi-Hung Juan,et al.  Dissociation of spatial attention and saccade preparation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. Mattingley,et al.  Fast and slow parietal pathways mediate spatial attention , 2004, Nature Neuroscience.

[61]  Robert H. Wurtz,et al.  Subcortical Modulation of Attention Counters Change Blindness , 2004, The Journal of Neuroscience.

[62]  J. Mattingley,et al.  The cognitive and neural bases of spatial neglect , 2004 .

[63]  Etienne Olivier,et al.  A Deficit in Covert Attention after Parietal Cortex Inactivation in the Monkey , 2004, Neuron.

[64]  Jason B. Mattingley,et al.  Modality-Specific Control of Strategic Spatial Attention in Parietal Cortex , 2004, Neuron.

[65]  A. Cowey,et al.  Striate cortex (V1) activity gates awareness of motion , 2005, Nature Neuroscience.

[66]  Tracy R. Henderson,et al.  Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. , 2005, Journal of neurophysiology.

[67]  Chris Rorden,et al.  Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues , 2005, Neuropsychologia.

[68]  James R Müller,et al.  Microstimulation of the superior colliculus focuses attention without moving the eyes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Jun Soo Kwon,et al.  Functional imaging evidence of the relationship between recurrent psychotic episodes and neurodegenerative course in schizophrenia , 2005, Psychiatry Research: Neuroimaging.

[70]  J. Rothwell,et al.  Theta Burst Stimulation of the Human Motor Cortex , 2005, Neuron.

[71]  M. Carrasco,et al.  Transient Attention Enhances Perceptual Performance and fMRI Response in Human Visual Cortex , 2005, Neuron.

[72]  Gregor Thut,et al.  Dorsal posterior parietal rTMS affects voluntary orienting of visuospatial attention. , 2005, Cerebral cortex.

[73]  Junying Yuan,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2022 .