Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems

In this paper we develop adaptive iterative coupling schemes for the Biot system modeling coupled poromechanics problems. We particularly consider the space-time formulation of the fixed-stress iterative scheme, in which we first solve the problem of flow over the whole space-time interval, then exploiting the space-time information for solving the mechanics. Two common discretizations of this algorithm are then introduced based on two coupled mixed finite element methods in-space and the backward Euler scheme in-time. Therefrom, adaptive fixed-stress algorithms are build on conforming reconstructions of the pressure and displacement together with equilibrated flux and stresses reconstructions. These ingredients are used to derive a posteriori error estimates for the fixed-stress algorithms, distinguishing the different error components, namely the spatial discretization, the temporal discretization, and the fixed-stress iteration components. Precisely, at the iteration $k\geq 1$ of the adaptive algorithm, we prove that our estimate gives a guaranteed and fully computable upper bound on the energy-type error measuring the difference between the exact and approximate pressure and displacement. These error components are efficiently used to design adaptive asynchronous time-stepping and adaptive stopping criteria for the fixed-stress algorithms. Numerical experiments illustrate the efficiency of our estimates and the performance of the adaptive iterative coupling algorithms.

[1]  Martin Vohralík,et al.  A unified framework for a posteriori error estimation for the Stokes problem , 2012, Numerische Mathematik.

[2]  Elyes Ahmed,et al.  Adaptive poromechanics computations based on a posteriori error estimates for fully mixed formulations of Biot’s consolidation model , 2019, Computer Methods in Applied Mechanics and Engineering.

[3]  Son-Young Yi Convergence analysis of a new mixed finite element method for Biot's consolidation model , 2014 .

[4]  J. M. Crolet,et al.  SINUPROS: human cortical bone multiscale model with a fluide–structure interaction , 2007 .

[5]  J. Nordbotten,et al.  Finite volume methods for elasticity with weak symmetry , 2015, 1512.01042.

[6]  Martin Vohralík,et al.  Robust a Posteriori Error Control and Adaptivity for Multiscale, Multinumerics, and Mortar Coupling , 2013, SIAM J. Numer. Anal..

[7]  Mary F. Wheeler,et al.  Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics , 2016 .

[8]  Elyes Ahmed,et al.  Well-posedness of the fully coupled quasi-static thermo-poroelastic equations with nonlinear convective transport , 2018, Journal of Mathematical Analysis and Applications.

[9]  Ruben Juanes,et al.  Stability, Accuracy and Efficiency of Sequential Methods for Coupled Flow and Geomechanics , 2009 .

[10]  G. Miel,et al.  On a posteriori error estimates , 1977 .

[11]  Joshua A. White,et al.  Accuracy and convergence properties of the fixed‐stress iterative solution of two‐way coupled poromechanics , 2015 .

[12]  Ruben Juanes,et al.  Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits , 2011 .

[13]  Daniele Boffi,et al.  A Nonconforming High-Order Method for the Biot Problem on General Meshes , 2015, SIAM J. Sci. Comput..

[14]  Jeonghun J. Lee,et al.  Parameter-Robust Discretization and Preconditioning of Biot's Consolidation Model , 2015, SIAM J. Sci. Comput..

[15]  Martin Vohralík,et al.  A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation , 2010, SIAM J. Numer. Anal..

[16]  Vu-Hieu Nguyen,et al.  Poroelastic behaviour of cortical bone under harmonic axial loading: a finite element study at the osteonal scale. , 2010, Medical engineering & physics.

[17]  Jan M. Nordbotten,et al.  A Multipoint Stress Mixed Finite Element Method for Elasticity on Simplicial Grids , 2018, SIAM J. Numer. Anal..

[18]  Johannes Kraus,et al.  Conservative discretizations and parameter‐robust preconditioners for Biot and multiple‐network flux‐based poroelasticity models , 2018, Numer. Linear Algebra Appl..

[19]  Vu-Hieu Nguyen,et al.  Influence of microcracks on interstitial fluid flows at the osteonal scale , 2011 .

[20]  Martin Vohralík,et al.  Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem , 2014, Math. Comput..

[21]  Martin Vohralík,et al.  A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..

[22]  Seymour V. Parter A POSTERIORI ERROR ESTIMATES , 1975 .

[23]  Martin Vohralík,et al.  A posteriori stopping criteria for space-time domain decomposition for the heat equation in mixed formulations , 2018 .

[24]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[25]  Jan M. Nordbotten,et al.  On the optimization of the fixed‐stress splitting for Biot's equations , 2018, International Journal for Numerical Methods in Engineering.

[26]  Martin Vohralík,et al.  A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media , 2014, J. Comput. Phys..

[27]  Carmen Rodrigo,et al.  On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics , 2017 .

[28]  Andro Mikelić,et al.  Convergence of iterative coupling for coupled flow and geomechanics , 2013, Computational Geosciences.

[29]  L. K. Thomas,et al.  Iterative Coupled Analysis of Geomechanics and Fluid Flow for Rock Compaction in Reservoir Simulation , 2002 .

[30]  F. Radu,et al.  Space–time finite element approximation of the Biot poroelasticity system with iterative coupling , 2016, 1611.06335.

[31]  Mary F. Wheeler,et al.  Numerical Convergence Study of Iterative Coupling for Coupled Flow and Geomechanics , 2012 .

[32]  JAN MARTIN NORDBOTTEN,et al.  Stable Cell-Centered Finite Volume Discretization for Biot Equations , 2015, SIAM J. Numer. Anal..

[33]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..

[34]  Maranda Bean,et al.  Iteratively coupled solution strategies for a four‐field mixed finite element method for poroelasticity , 2017 .

[35]  Alexandre Ern,et al.  Stress and flux reconstruction in Biot's poro-elasticity problem with application to a posteriori error analysis , 2017, Comput. Math. Appl..

[36]  Martin Vohralík,et al.  Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..

[37]  P. Longuemare,et al.  Coupling Fluid Flow and Rock Mechanics: Formulations of the Partial Coupling between Reservoir and Geomechanical Simulators , 2002 .

[38]  R. Showalter Diffusion in Poro-Elastic Media , 2000 .

[39]  Martin Vohralík,et al.  Space–time domain decomposition for two-phase flow between different rock types , 2019, Computer Methods in Applied Mechanics and Engineering.

[40]  Mary F. Wheeler,et al.  A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs , 2018, J. Comput. Phys..

[41]  L. K. Hansen,et al.  Adaptive regularization , 1994, Proceedings of IEEE Workshop on Neural Networks for Signal Processing.

[42]  Vu-Hieu Nguyen,et al.  Influence of interstitial bone microcracks on strain-induced fluid flow , 2011, Biomechanics and modeling in mechanobiology.

[43]  Martin Vohralík,et al.  A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows , 2013, Computational Geosciences.

[44]  J. Kraus,et al.  Parameter-robust stability of classical three-field formulation of Biot's consolidation model , 2017, 1706.00724.

[45]  Ludmil T. Zikatanov,et al.  A finite element framework for some mimetic finite difference discretizations , 2015, Comput. Math. Appl..

[46]  Andrew J. Wathen,et al.  Stopping criteria for iterations in finite element methods , 2005, Numerische Mathematik.

[47]  Carmen Rodrigo,et al.  A parallel-in-time fixed-stress splitting method for Biot's consolidation model , 2018, 1802.00949.

[48]  Ivan Yotov,et al.  A multipoint stress mixed finite element method for elasticity on quadrilateral grids , 2018, Numerical Methods for Partial Differential Equations.

[49]  Jan M. Nordbotten,et al.  Robust fixed stress splitting for Biot's equations in heterogeneous media , 2017, Appl. Math. Lett..

[50]  Jeonghun J. Lee,et al.  Robust Error Analysis of Coupled Mixed Methods for Biot’s Consolidation Model , 2015, J. Sci. Comput..