Simple adaptive stabilization of output feedback stabilizable distributed parameter systems

We show that the simple universal adaptive control lawu(t)=N(k(t))y(t)=|y(t)|2, withN(k)=(logk)γ cos((logk)σ) and 3γ+σ<1, stabilizes all detectable and stabilizable infinite dimensional systems of Pritchard-Salamon type which are externally stabilized by somescalar output feedback. The same controller is also shown to stabilize time varying systems satisfying the same type of output feedback stabilizability.

[1]  Ruth F. Curtain,et al.  Well-Posedness, stabilizability, and admissibility for Pritchard-Salamon systems , 1992 .

[2]  Hartmut Logemann,et al.  Input‐output theory of high‐gain adaptive stabilization of infinite‐dimensional systems with non‐linearities , 1988 .

[3]  Stuart Townley,et al.  Robustness Optimization for Uncertain Infinite-Dimensional Systems with Unbounded Inputs , 1991 .

[4]  Stuart Townley,et al.  Robustness of linear systems , 1989 .

[5]  C. Byrnes,et al.  Boundary Feedback Stabilization of Distributed Parameter Systems , 1990 .

[6]  Achim Ilchmann,et al.  Robustness of stability of time-varying linear systems , 1989 .

[7]  Stuart Townley,et al.  Simple adaptive stabilization of high-gain stabilizable systems , 1993 .

[8]  Hartmut Logemann,et al.  Circle criteria, small-gain conditions and internal stability for infinite-dimensional systems , 1991, Autom..

[9]  Martin Corless,et al.  Adaptive control of a class of nonlinearly perturbed linear systems of relative degree two , 1993 .

[10]  Jan Willem Polderman,et al.  Correction and simplification to “The order of a stabilizing regulator is sufficient a priori information for adaptive stabilization” , 1993 .

[11]  Bengt Mårtensson,et al.  The order of any stabilizing regulator is sufficient a priori information for adaptive stabilization , 1985 .

[12]  A. J. Pritchard,et al.  The linear quadratic control problem for infinite dimensional systems with unbounded input and outpu , 1987 .

[13]  Ian R. Petersen,et al.  A riccati equation approach to the stabilization of uncertain linear systems , 1986, Autom..

[14]  Christopher I. Byrnes,et al.  Boundary feedback design for nonlinear distributed parameter systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[15]  C. Desoer,et al.  On the generalized Nyquist stability criterion , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[16]  Hartmut Logemann,et al.  Some remarks on adaptive stabilization of infinite-dimensional systems , 1991 .

[17]  J. Willems,et al.  Global adaptive stabilization in the absence of information on the sign of the high frequency gain , 1984 .

[18]  Hartmut Logemann,et al.  Adaptive stabilization of infinite-dimensional systems , 1992 .