Modeling of Entorhinal Cortex and Simulation of Epileptic Activity: Insights Into the Role of Inhibition-Related Parameters

This paper describes a macroscopic neurophysiologically relevant model of the entorhinal cortex (EC), a brain structure largely involved in human mesio-temporal lobe epilepsy. This model is intervalidated in the experimental framework of ictogenesis animal model (isolated guinea-pig brain perfused with bicuculline). Using sensitivity and stability analysis, an investigation of model parameters related to GABA neurotransmission (recognized to be involved in epileptic activity generation) was performed. Based on spectral and statistical features, simulated signals generated from the model for multiple GABAergic inhibition-related parameter values were classified into eight classes of activity. Simulated activities showed striking agreement (in terms of realism) with typical epileptic activities identified in field potential recordings performed in the experimental model. From this combined computational/experimental approach, hypotheses are suggested about the role of different types of GABAergic neurotransmission in the generation of epileptic activities in EC.

[1]  M. Witter,et al.  Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents , 1998, Hippocampus.

[2]  K Abraham-Fuchs,et al.  MFT in complex partial epilepsy: spatio-temporal estimates of interictal activity , 1995, Neuroreport.

[3]  E. Lothman,et al.  An in vitro study of focal epileptogenesis in combined hippocampal-parahippocampal slices , 1993, Epilepsy Research.

[4]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[5]  M. Avoli,et al.  Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro , 2002, Progress in Neurobiology.

[6]  M. Witter,et al.  Calretinin in the entorhinal cortex of the rat: Distribution, morphology, ultrastructure of neurons, and co‐localization with γ‐aminobutyric acid and parvalbumin , 2000, The Journal of comparative neurology.

[7]  David K. Bilkey,et al.  THE PARAHIPPOCAMPAL REGION: ORGANIZATION AND ROLE IN COGNITIVE FUNCTION , 2004 .

[8]  J. Bellanger,et al.  Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition , 2002, The European journal of neuroscience.

[9]  Fabrice Wendling,et al.  Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals , 2000, Biological Cybernetics.

[10]  Denis Paré,et al.  The electrophysiology of the olfactory–hippocampal circuit in the isolated and perfused adult mammalian brain in vitro , 1991, Hippocampus.

[11]  G Biella,et al.  Olfactory inputs activate the medial entorhinal cortex via the hippocampus. , 2000, Journal of neurophysiology.

[12]  D. Amaral,et al.  Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex. , 2002, The Journal of comparative neurology.

[13]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[14]  Miles A Whittington,et al.  Coexistence of gamma and high‐frequency oscillations in rat medial entorhinal cortex in vitro , 2004, The Journal of physiology.

[15]  R. Traub,et al.  On the Mechanism of the γ → β Frequency Shift in Neuronal Oscillations Induced in Rat Hippocampal Slices by Tetanic Stimulation , 1999, The Journal of Neuroscience.

[16]  U. Heinemann,et al.  Characterization of the inhibitory glycine receptor on entorhinal cortex neurons , 2004, The European journal of neuroscience.

[17]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[18]  M. Avoli,et al.  Initiation of electrographic seizures by neuronal networks in entorhinal and perirhinal cortices in vitro , 2004, Neuroscience.

[19]  D. Spencer,et al.  Entorhinal‐Hippocampal Interactions in Medial Temporal Lobe Epilepsy , 1994, Epilepsia.

[20]  G. Buzsáki,et al.  Operational Dynamics in the Hippocampal-entorhinal Axis , 1998, Neuroscience & Biobehavioral Reviews.

[21]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[22]  D. Paré,et al.  The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus , 2004, Progress in Neurobiology.

[23]  Floris G Wouterlood,et al.  Input from the presubiculum to dendrites of layer-V neurons of the medial entorhinal cortex of the rat , 2004, Brain Research.

[24]  M. Witter,et al.  Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region , 1989, Progress in Neurobiology.

[25]  W. Freeman Models of the dynamics of neural populations. , 1978, Electroencephalography and clinical neurophysiology. Supplement.

[26]  J. White,et al.  Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Dugladze,et al.  Properties of entorhinal cortex deep layer neurons projecting to the rat dentate gyrus , 2001, The European journal of neuroscience.

[28]  D. Amaral,et al.  Entorhinal cortex of the rat: Organization of intrinsic connections , 1998, The Journal of comparative neurology.

[29]  T. Dugladze,et al.  Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat , 1997, Neuroscience.

[30]  M. de Curtis,et al.  Epileptiform ictal discharges are prevented by periodic interictal spiking in the olfactory cortex , 2003, Annals of neurology.

[31]  H. Soininen,et al.  Distribution of parvalbumin‐, calretinin‐, and calbindin‐D28k–immunoreactive neurons and fibers in the human entorhinal cortex , 1997, The Journal of comparative neurology.

[32]  A. Pitkänen,et al.  Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat , 1999, The Journal of comparative neurology.

[33]  F. Wouterlood,et al.  Sparse colocalization of somatostatin‐ and GABA‐immunoreactivity in the entorhinal cortex of the rat , 2000, Hippocampus.

[34]  D. Amaral,et al.  Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus , 1998, The Journal of comparative neurology.

[35]  M. Stewart,et al.  GABA receptor-mediated post-synaptic potentials in the retrohippocampal cortices: regional, laminar and cellular comparisons , 1998, Brain Research.

[36]  D. Amaral,et al.  Topographical organization of the entorhinal projection to the dentate gyrus of the monkey , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  M. Curtis,et al.  Polysynaptic olfactory pathway to the ipsi- and contralateral entorhinal cortex mediated via the hippocampus , 2005, Neuroscience.

[38]  M. de Curtis,et al.  Topographic distribution of direct and hippocampus‐ mediated entorhinal cortex activity evoked by olfactory tract stimulation , 2004, The European journal of neuroscience.

[39]  Matthew I. Banks,et al.  Kinetic Differences between Synaptic and Extrasynaptic GABAA Receptors in CA1 Pyramidal Cells , 2000, The Journal of Neuroscience.

[40]  F. H. Lopes da Silva,et al.  Models of neuronal populations: the basic mechanisms of rhythmicity. , 1976, Progress in brain research.

[41]  Fabrice Bartolomei,et al.  Electric Source Imaging in Temporal Lobe Epilepsy , 2004, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[42]  Charles L. Wilson,et al.  Quantitative analysis of high-frequency oscillations (80-500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. , 2002, Journal of neurophysiology.

[43]  K. Jellinger,et al.  The Parahippocampal Region: Organization and Role in Cognitive Function , 2003 .

[44]  F. L. D. Silva,et al.  Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network , 2004, Neuroscience.

[45]  M. Witter,et al.  Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat , 2003, Hippocampus.

[46]  Sarah Craig,et al.  Interaction between paired-pulse facilitation and long-term potentiation in the projection from hippocampal area CA1 to the entorhinal cortex , 2005, Neuroscience Research.

[47]  M. Witter,et al.  Parvalbumin-immunoreactive neurons in the entorhinal cortex of the rat: localization, morphology, connectivity and ultrastructure , 1995, Journal of neurocytology.

[48]  Floris G Wouterlood,et al.  Tracing tools to resolve neural circuits , 2002, Network.

[49]  J. White,et al.  Interactions between Distinct GABAA Circuits in Hippocampus , 2000, Neuron.

[50]  F. Wendling,et al.  Temporal lobe epilepsy , 2019, Radiopaedia.org.

[51]  Freeman Wj Models of the dynamics of neural populations. , 1978 .

[52]  G Biella,et al.  Multifocal spontaneous epileptic activity induced by restricted bicuculline ejection in the piriform cortex of the isolated guinea pig brain. , 1994, Journal of neurophysiology.

[53]  R. Llinás,et al.  The Isolated and Perfused Brain of the Guinea‐pig In Vitro , 1993, The European journal of neuroscience.

[54]  J M Wyss,et al.  An autoradiographic study of the efferent connections of the entorhinal cortex in the rat , 1981, The Journal of comparative neurology.

[55]  Charles L. Wilson,et al.  High‐frequency Oscillations after Status Epilepticus: Epileptogenesis and Seizure Genesis , 2004, Epilepsia.

[56]  J. Breustedt,et al.  Effects of Taurine and Glycine on Epileptiform Activity Induced by Removal of Mg2+ in Combined Rat Entorhinal Cortex–Hippocampal Slices , 2003, Epilepsia.

[57]  D. Amaral,et al.  Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex , 2000, The Journal of comparative neurology.

[58]  N. Fountain,et al.  Responses of deep entorhinal cortex are epileptiform in an electrogenic rat model of chronic temporal lobe epilepsy. , 1998, Journal of neurophysiology.

[59]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[60]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[61]  M. de Curtis,et al.  Activity-Dependent pH Shifts and Periodic Recurrence of Spontaneous Interictal Spikes in a Model of Focal Epileptogenesis , 1998, The Journal of Neuroscience.

[62]  Floris G. Wouterlood,et al.  GABAergic Presubicular Projections to the Medial Entorhinal Cortex of the Rat , 1997, The Journal of Neuroscience.

[63]  G. Woodhall,et al.  Fundamental differences in spontaneous synaptic inhibition between deep and superficial layers of the rat entorhinal cortex , 2005, Hippocampus.

[64]  M. Whittington,et al.  Gamma Oscillations Induced by Kainate Receptor Activation in the Entorhinal Cortex In Vitro , 2003, The Journal of Neuroscience.

[65]  N. Tamamaki,et al.  Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats , 1995, The Journal of comparative neurology.

[66]  R. S. Jones,et al.  Basket-like interneurones in layer II of the entorhinal cortex exhibit a powerful NMDA-mediated synaptic excitation , 1993, Neuroscience Letters.

[67]  Ben H. Jansen,et al.  A neurophysiologically-based mathematical model of flash visual evoked potentials , 2004, Biological Cybernetics.

[68]  M. Witter,et al.  Projections from the presubiculum and the parasubiculum to morphologically characterized entorhinal-hippocampal projection neurons in the rat , 2004, Experimental Brain Research.

[69]  Fabrice Wendling,et al.  Entorhinal Cortex Involvement in Human Mesial Temporal Lobe Epilepsy: An Electrophysiologic and Volumetric Study , 2005, Epilepsia.