Optical Signal Processing Techniques for Signal Regeneration and Digital Logic

This chapter presents recent developments in optical signal processing techniques and digital logic. The first section focuses on techniques to obtain key functionalities as signal regeneration and wavelength conversion exploiting nonlinear effects in high nonlinear fibres and semiconductor optical amplifiers. The second section covers techniques for clock recovery and retiming at high-speed transmission up to 320 Gb/s. In addition a technique to obtain OTDM demultiplexing based on cross-phase modulation is reported.

[1]  F. Matera,et al.  All-optical fiber 2+1 auxiliary carrier transponder-regenerator , 2005, IEEE Photonics Technology Letters.

[2]  M. Nakazawa,et al.  Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise. , 1999, Optics letters.

[3]  L. Oxenløwe,et al.  Low-penalty Raman-Assisted XPM Wavelength Conversion at 320 Gb/s , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[4]  A. Suzuki,et al.  THz optical-frequency conversion of 1 Gb/s-signals using highly nondegenerate four-wave mixing in an InGaAsP semiconductor laser , 1991, IEEE Photonics Technology Letters.

[5]  R Slavík,et al.  Picosecond and sub-picosecond flat-top pulse generation using uniform long-period fiber gratings. , 2006, Optics express.

[6]  H. Furukawa,et al.  All-Optical Conversion From RZ to NRZ Using Gain-Clamped SOA , 2007, IEEE Photonics Technology Letters.

[7]  D. Blumenthal,et al.  A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering , 2000, IEEE Photonics Technology Letters.

[8]  P. Mamyshev All-optical data regeneration based on self-phase modulation effect , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[10]  Gregory Raybon,et al.  107-Gb/s optical ETDM transmitter for 100G Ethernet transport , 2005 .

[11]  Y. Ueno,et al.  Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator , 2001, IEEE Photonics Technology Letters.

[12]  Andrew D. Ellis,et al.  10 GHz pulse train derived from a CW DFB laser using crossphase modulation in an optical fibre , 1993 .

[13]  S. Camatel,et al.  All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation (XPM) in dispersion-shifted fiber , 2004, IEEE Photonics Technology Letters.

[14]  Gerhard Ribnicsek Fast Clock Recovery Methods for Application in All-Optical Networks , 2006 .

[15]  W. Freude,et al.  Multi-Wavelength Regenerative Amplification Based on Quantum-Dot Semiconductor Optical Amplifiers , 2007, 2007 9th International Conference on Transparent Optical Networks.

[16]  Bruno Lavigne,et al.  Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering , 2003 .

[17]  M. Schwartz,et al.  Communication Systems and Techniques , 1996, IEEE Communications Magazine.

[18]  I. Tomkos,et al.  Simulation of Multiwavelength Regeneration Based on QD Semiconductor Optical Amplifiers , 2007, IEEE Photonics Technology Letters.

[19]  Xueliang Song,et al.  All-Optical OTDM DEMUX with Monolithic SOA-MZI Switch by Regrowth-Free Selective Area MOVPE , 2005, 2005 Pacific Rim Conference on Lasers & Electro-Optics.

[20]  H. Avramopoulos,et al.  30 Gb/s all-optical clock recovery circuit , 2000, IEEE Photonics Technology Letters.

[21]  J. Rorison,et al.  The Constraints on Quantum-Dot Semiconductor Optical Amplifiers for Multichannel Amplification , 2006, IEEE Photonics Technology Letters.

[22]  Masahiko Jinno,et al.  Optical tank circuits used for all-optical timing recovery , 1992 .

[23]  O. Kamatani,et al.  Prescaled timing extraction from 400 Gb/s optical signal using a phase lock loop based on four-wave-mixing in a laser diode amplifier , 1996, IEEE Photonics Technology Letters.

[24]  J. W. Lou,et al.  80 to 10 Gbit/s clock recovery using phase detection with Mach-Zehnder modulator , 2001 .

[25]  D. Bimberg,et al.  Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  Leif Katsuo Oxenløwe,et al.  Clock recovery from 160 Gbit/s data signals using phase-locked loop with interferometric optical switch based on semiconductor optical amplifier , 2001 .

[27]  Dynamic Spatiotemporal Speed Control of Ultrashort Pulses in Quantum-Dot SOAs , 2006, IEEE Journal of Quantum Electronics.

[28]  Colja Schubert,et al.  160 Gbit/s optical 3R-regenerator in a fiber transmission experiment , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[29]  Hiroshi Ishikawa,et al.  Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb s-1 and a new scheme of 3R regenerators , 2002 .

[30]  Eiji Yoshida,et al.  Coherence Degradation in the Process of Supercontinuum Generation in an Optical Fiber , 1998 .

[31]  A.M.J. Koonen,et al.  Error-free 320 Gb/s SOA-based Wavelength Conversion using Optical Filtering , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[32]  Jichai Jeong,et al.  Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA's , 1999 .

[33]  T. W. Berg,et al.  Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices , 2001, IEEE Photonics Technology Letters.

[34]  Leif Katsuo Oxenløwe,et al.  640 Gbit/s clock recovery using periodically poled lithium niobate , 2008 .

[35]  Michael Galili,et al.  320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop. , 2008, Optics express.

[36]  P. Barnsley,et al.  All-optical clock extraction using two-contact devices , 1993 .

[37]  Carsten Bornholdt,et al.  All-optical clock recovery module based on self-pulsating DFB laser , 1998 .

[38]  Francesca Parmigiani,et al.  Errata to “All-Optical Pulse Reshaping and Retiming Systems Incorporating Pulse Shaping Fiber Bragg Grating” , 2006 .

[39]  Periklis Petropoulos,et al.  Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating , 2001 .

[40]  I. Tomkos,et al.  Investigation of Multi-Wavelength Regeneration Employing Quantum-Dot Semiconductor Optical Amplifiers beyond 40Gb/s , 2007, 2007 9th International Conference on Transparent Optical Networks.

[41]  Yizhi Gao,et al.  Comb-like filter preprocessing to reduce the pattern effect in the clock recovery based on SOA , 2002 .

[42]  T. W. Berg,et al.  Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[43]  H. Ishikawa,et al.  Application of spectral-hole burning in the inhomogeneously broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device , 2000, IEEE Photonics Technology Letters.