Boolean Functions : Influence , threshold and noise

This lecture studies the analysis of Boolean functions and present a few ideas, results, proofs, and problems. We start with the wider picture of expansion in graphs and then concentrate on the graph of the n-dimensional discrete cube Ωn. Boolean functions are functions from Ωn to {0, 1}. We consider the notion of the influence of variables on Boolean functions. The influence of a variable on a Boolean function is the probability that changing the value of the variable changes the value of the function. We then consider Fourier analysis of real functions on Ωn and some applications of Fourier methods. We go on to discuss connections with sharp threshold phenomena, percolation, random graphs, extremal combinatorics, correlation inequalities, and more. 2010 Mathematics Subject Classification. Primary 05-02; Secondary 05D05, 05C80.

[1]  L. Russo An approximate zero-one law , 1982 .

[2]  Gil Kalai,et al.  Influential coalitions for Boolean Functions , 2014, 1409.3033.

[3]  Michel Talagrand,et al.  On boundaries and influences , 1997, Comb..

[4]  Nathan Linial,et al.  Collective Coin Flipping , 1989, Adv. Comput. Res..

[5]  Boris Tsirelson,et al.  Examples of Nonlinear Continuous Tensor Products of Measure Spaces and Non-Fock Factorizations , 1998 .

[6]  M. Ledoux The concentration of measure phenomenon , 2001 .

[7]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[8]  L. H. Harper A necessary condition on minimal cube numberings , 1967 .

[9]  Béla Bollobás,et al.  Threshold functions , 1987, Comb..

[10]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[11]  Hamed Hatami A structure theorem for Boolean functions with small total influences , 2010, 1008.1021.

[12]  Peter Frankl,et al.  Erdös-Ko-Rado theorem with conditions on the maximal degree , 1987, J. Comb. Theory, Ser. A.

[13]  Yuval Filmus,et al.  Triangle-intersecting Families of Graphs , 2010 .

[14]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[15]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1993, JACM.

[16]  Oded Schramm,et al.  The Fourier spectrum of critical percolation , 2008, 0803.3750.

[17]  C. Garban Oded Schramm's contributions to noise sensitivity. , 2011 .

[18]  Raphael Rossignol,et al.  Noise-stability and central limit theorems for effective resistance of random electric networks , 2012, 1206.3856.

[19]  Elchanan Mossel,et al.  Geometric Influences II: Correlation Inequalities and Noise Sensitivity , 2012 .

[20]  O. Schramm,et al.  Quantitative noise sensitivity and exceptional times for percolation , 2005, math/0504586.

[21]  Gil Kalai,et al.  The Quantum Computer Puzzle (Expanded Version) , 2016, 1605.00992.

[22]  Ryan O'Donnell,et al.  Analysis of Boolean Functions , 2014, ArXiv.

[23]  Journal für die reine und angewandte Mathematik , 1893 .

[24]  Nathan Linial,et al.  Homological Connectivity Of Random 2-Complexes , 2006, Comb..

[25]  A. Khintchine Über dyadische Brüche , 1923 .

[26]  H. Kesten The critical probability of bond percolation on the square lattice equals 1/2 , 1980 .

[27]  Elchanan Mossel,et al.  On the correlation of increasing families , 2015, J. Comb. Theory, Ser. A.

[28]  Jeff Kahn,et al.  Thresholds and Expectation Thresholds , 2007, Comb. Probab. Comput..

[29]  H. Kesten Scaling relations for 2D-percolation , 1987 .

[30]  Gil Kalai,et al.  NOTES AND COMMENTS: SOCIAL INDETERMINACY , 2004 .

[31]  H. Kesten On the Speed of Convergence in First-Passage Percolation , 1993 .

[32]  Haran Pilpel,et al.  Intersecting Families of Permutations , 2010, 1011.3342.

[33]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[34]  Elchanan Mossel,et al.  Noise stability of functions with low influences: Invariance and optimality , 2005, IEEE Annual Symposium on Foundations of Computer Science.

[35]  János Pach,et al.  Overlap properties of geometric expanders , 2011, SODA '11.

[36]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1989, 30th Annual Symposium on Foundations of Computer Science.

[37]  Christophe Garban,et al.  Noise Sensitivity of Boolean Functions and Percolation , 2011, 1102.5761.

[38]  Michel Talagrand,et al.  How much are increasing sets positively correlated? , 1996, Comb..

[39]  L. Corry,et al.  Zionist Internationalism through Number Theory: Edmund Landau at the Opening of the Hebrew University in 1925 , 2010, Science in Context.

[40]  L. Russo A note on percolation , 1978 .

[41]  V. Beara The self-dual point of the two-dimensional random-cluster model is critical for q > 1 , 2011 .

[42]  Michel Talagrand,et al.  Are many small sets explicitly small? , 2010, STOC '10.

[43]  S. Chatterjee Superconcentration and Related Topics , 2014 .

[44]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[45]  Ryan O'Donnell,et al.  Every decision tree has an influential variable , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[46]  Ehud Friedgut,et al.  Boolean Functions With Low Average Sensitivity Depend On Few Coordinates , 1998, Comb..

[47]  W. Beckner Inequalities in Fourier analysis , 1975 .

[48]  Guy Kindler,et al.  Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[49]  M. Talagrand On Russo's Approximate Zero-One Law , 1994 .

[50]  J. Bourgain On Sharp Thresholds of Monotone Properties , 1997 .

[51]  Gyula O. H. Katona,et al.  Intersection theorems for systems of finite sets , 1964 .

[52]  A. Bonami Étude des coefficients de Fourier des fonctions de $L^p(G)$ , 1970 .

[53]  G. Kalai,et al.  Every monotone graph property has a sharp threshold , 1996 .

[54]  H. Poincaré,et al.  Percolation ? , 1982 .

[55]  Yishay Mansour,et al.  An O(nlog log n) learning algorithm for DNF under the uniform distribution , 1992, COLT '92.

[56]  J. Bourgain,et al.  Influences of Variables and Threshold Intervals under Group Symmetries , 1997 .

[57]  A. J. W. Hilton,et al.  SOME INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1967 .

[58]  Paul Erdös,et al.  On random graphs, I , 1959 .