Acceleration of Affine Hybrid Transformations

This work addresses the computation of the set of reachable configurations of linear hybrid automata. The approach relies on symbolic state-space exploration, using acceleration in order to speed up the computation and to make it terminate for a broad class of systems. Our contribution is an original method for accelerating the control cycles of linear hybrid automata, i.e., to compute their unbounded repeated effect. The idea consists in analyzing the data transformations that label these cycles, by reasoning about the geometrical features of the corresponding system of linear constraints. This approach is complete over Multiple Counters Systems (MCS), and is able to accelerate hybrid transformations that are out of scope of existing techniques.

[1]  Bernard Boigelot Symbolic Methods for Exploring Infinite State Spaces , 1998 .

[2]  Bernard Boigelot,et al.  Automata-Based Symbolic Representations of Polyhedra , 2012, LATA.

[3]  Wojciech Rytter,et al.  On the Maximal Number of Cubic Runs in a String , 2010, LATA.

[4]  Kousha Etessami,et al.  Analysis of Recursive Game Graphs Using Data Flow Equations , 2004, VMCAI.

[5]  Hubert Comon-Lundh,et al.  Multiple Counters Automata, Safety Analysis and Presburger Arithmetic , 1998, CAV.

[6]  Marius Bozga,et al.  Safety Problems Are NP-complete for Flat Integer Programs with Octagonal Loops , 2013, VMCAI.

[7]  Marius Bozga,et al.  Fast Acceleration of Ultimately Periodic Relations , 2010, CAV.

[8]  Pierre Wolper,et al.  An effective decision procedure for linear arithmetic over the integers and reals , 2005, TOCL.

[9]  Bernard Boigelot,et al.  Implicit Real Vector Automata , 2010, INFINITY.

[10]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[11]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[12]  Sébastien Jodogne,et al.  Hybrid Acceleration Using Real Vector Automata (Extended Abstract) , 2003, CAV.

[13]  Frédéric Herbreteau,et al.  The Power of Hybrid Acceleration , 2006, CAV.

[14]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[15]  Bernard Boigelot,et al.  On iterating linear transformations over recognizable sets of integers , 2003, Theor. Comput. Sci..

[16]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[17]  Marius Bozga,et al.  Iterating Octagons , 2009, TACAS.

[18]  C. A. R. Hoare,et al.  A Calculus of Durations , 1991, Inf. Process. Lett..