Image processing for medical diagnosis using CNN

Abstract Medical diagnosis is one of the most important area in which image processing procedures are usefully applied. Image processing is an important phase in order to improve the accuracy both for diagnosis procedure and for surgical operation. One of these fields is tumor/cancer detection by using Microarray analysis. The research studies in the Cancer Genetics Branch are mainly involved in a range of experiments including the identification of inherited mutations predisposing family members to malignant melanoma, prostate and breast cancer. In bio-medical field the real-time processing is very important, but often image processing is a quite time-consuming phase. Therefore techniques able to speed up the elaboration play an important rule. From this point of view, in this work a novel approach to image processing has been developed. The new idea is to use the Cellular Neural Networks to investigate on diagnostic images, like: Magnetic Resonance Imaging, Computed Tomography, and fluorescent cDNA microarray images.

[1]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[2]  G. Linan,et al.  The CNNUC3: an analog I/O 64x64 CNN universal machine chip prototype with 7-bit analog accuracy , 2000, Proceedings of the 2000 6th IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 2000) (Cat. No.00TH8509).

[3]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .