Digital Holography: Computer-Generated Holograms and Diffractive Optics in Scalar Diffraction Domain

The invention of holography by D. Gabor, followed by the works of E. Leith and Upatnieks, made possible to perform nearly arbitrarily wavefront transformations with the aid of optical microstructures fabricated by interference (Gabor, 1948; Leith & Upatnieks, 1962; Denisyuk, 1962; Benton, 1969). The realization by A. Lohmann and co-workers in the mid1960’s that optical holograms can be simulated by digitally generated binary transparencies was another significant step forward in the path towards widespread application of diffraction in optics (Lohmann, 1956; Brown & Lohmann 1966; Lohmann & Paris, 1967). This new approach was called digital holography, or equivalently computer-generated holography. The computer-generated hologram (CGH) is distinguished primarily from its optical cousin by the fact that the computer is able to design a hologram of a non-existent, synthetic or virtual object, and the operation of the diffractive optical element (DOE) can be optimized mathematically rather than experimentally (Turunen & Wyrowski, 1997). This is clear from the words of Professor Lohmann himself, commenting on the shift from classic holography to digital holography (Lohmann, 2008): “we considered images as information, and we applied notions about carriers from communications and information theory [...]. In other words, our approach represented a paradigm shift from physical optics to optical information processing. “ Since the operation of CGH is based on the diffraction of light, this field is also called diffractive optics. Its essence is the control of optical fields by microstructured media (Turunen & Wyrowski, 1997). The DOE is an optical device whose superficial microrelief has a height comparable to the light wavelength used. The DOE may be implemented in the form of a transparency or a reflecting mirror. Throughout this text the terms computer-generated holograms (CGH), diffractive optical element (DOE), or simply hologram are employed with no distinction among each other.

[1]  Giuseppe A. Cirino,et al.  Design of cubic-phase distribution lenses for passive infrared motion sensors , 2003, SPIE Defense + Commercial Sensing.

[2]  H. Herzig Micro-Optics : Elements, Systems And Applications , 1997 .

[3]  P. Verdonck,et al.  Diffraction gratings fabricated in DLC thin films , 2010 .

[4]  Frank Wyrowski,et al.  Diffractive optical elements: iterative calculation of quantized, blazed phase structures , 1990 .

[5]  A W Lohmann,et al.  Binary fraunhofer holograms, generated by computer. , 1967, Applied optics.

[6]  Ronaldo Domingues Mansano,et al.  Design, fabrication, and characterization of a full complex-amplitude modulation diffractive optical element , 2003 .

[7]  F. Wyrowski Iterative quantization of digital amplitude holograms. , 1989, Applied optics.

[8]  A. Lohmann,et al.  Complex spatial filtering with binary masks. , 1966, Applied optics.

[9]  J. Goodman Introduction to Fourier optics , 1969 .

[10]  J. Allebach,et al.  Synthesis of digital holograms by direct binary search. , 1987, Applied optics.

[11]  Giuseppe A. Cirino,et al.  Implementation of Fresnel full complex-amplitude digital holograms , 2004 .

[12]  R. Bracewell The Fourier Transform and Its Applications , 1966 .

[13]  Marc D. Levenson Using Destructive Optical Interference in Semiconductor Lithography , 2006 .

[14]  Adolf W. Lohmann A Pre-History of Computer-Generated Holography , 2008 .

[15]  M. Levenson,et al.  Improving resolution in photolithography with a phase-shifting mask , 1982, IEEE Transactions on Electron Devices.

[16]  Giuseppe A. Cirino,et al.  Multiple-line generation over high angle using hybrid parabolic profile and binary surface-relief phase element , 1999, Other Conferences.

[17]  Frank Wyrowski,et al.  Diffraction efficiency of analog and quantized digital amplitude holograms: analysis and manipulation , 1990 .

[18]  Marc D. Levenson,et al.  Wavefront Engineering for Photolithography , 1993 .

[19]  D. Gabor A New Microscopic Principle , 1948, Nature.

[20]  P. Verdonck,et al.  Diffractive phase-shift lithography photomask operating in proximity printing mode. , 2010, Optics express.

[21]  D. O'shea,et al.  Diffractive Optics: Design, Fabrication, and Test , 2003 .

[22]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[23]  Joseph N. Mait,et al.  Understanding diffractive optical design in the scalar domain , 1995, OSA Annual Meeting.

[24]  A. W. Lohmann,et al.  Computer-generated binary holograms , 1969 .

[25]  James R. Fienup,et al.  Iterative Method Applied To Image Reconstruction And To Computer-Generated Holograms , 1979, Optics & Photonics.

[26]  W. Cathey,et al.  Extended depth of field through wave-front coding. , 1995, Applied optics.

[27]  Frank Wyrowski,et al.  Diffractive Optics for Industrial and Commercial Applications , 1997 .

[28]  Giuseppe A. Cirino,et al.  Optical implementation of cubic-phase distribution lenses for passive infrared motion sensors , 2004, SPIE Defense + Commercial Sensing.

[29]  A. Lohmann Optische Einseitenbandübertragung Angewandt auf das Gabor-Mikroskop , 1956 .

[30]  Y. Denisyuk Photographic Reconstruction of the Optical Properties of an Object in Its Own Scattered Radiation Field , 1962 .

[31]  Marc D. Levenson,et al.  Extending the lifetime of optical lithography technologies with wavefront engineering , 1994 .