A new domain decomposition method for the compressible Euler equations

In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The starting point is the equivalence with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-diffusion equation [Achdou and Nataf, C. R. Acad. Sci. Paris Ser. I 325 (1997) 1211–1216]. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains, it converges in 2 iterations. This property cannot be conserved strictly at discrete level and for arbitrary domain decompositions but we still have numerical results which confirm a very good stability with respect to the various parameters of the problem (mesh size, Mach number, ...).

[1]  Stéphane Lanteri,et al.  Convergence Analysis of a Schwarz Type Domain Decomposition Method for the Solution of the Euler Equations , 2000 .

[2]  Stéphane Lanteri,et al.  Convergence analysis of additive Schwarz for the Euler equations , 2004 .

[3]  Laurence Halpern,et al.  Méthodes de relaxation d'ondes (SWR) pour l'équation de la chaleur en dimension 1 , 2003 .

[4]  Charbel Farhat,et al.  A Minimum Overlap Restricted Additive Schwarz Preconditioner and Applications in 3D Flow Simulations , 1998 .

[5]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Systems of Conservation Laws: Spectral Collocation Approximations , 1990, SIAM J. Sci. Comput..

[6]  R. Glowinski,et al.  Variational formulation and algorithm for trace operation in domain decomposition calculations , 1988 .

[7]  Hongkai Zhao,et al.  Absorbing boundary conditions for domain decomposition , 1998 .

[8]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[9]  F. Gantmakher,et al.  Théorie des matrices , 1990 .

[10]  Stéphane Lanteri,et al.  Construction of interface conditions for solving the compressible Euler equations by non‐overlapping domain decomposition methods , 2002 .

[11]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[12]  Jing Li,et al.  A Dual-Primal FETI method for incompressible Stokes equations , 2005, Numerische Mathematik.

[13]  J. Mandel Balancing domain decomposition , 1993 .

[14]  Frédéric Nataf,et al.  A Robin-Robin preconditioner for an advection-diffusion problem , 1997 .

[15]  Jin-Fa Lee,et al.  A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays , 2005 .

[16]  Morten Bjørhus,et al.  A note on the convergence of discretized dynamic iteration , 1995 .

[17]  Olof B. Widlund,et al.  BDDC Algorithms for Incompressible Stokes Equations , 2006, SIAM J. Numer. Anal..

[18]  Frédéric Nataf,et al.  Symmetrized Method with Optimized Second-Order Conditions for the Helmholtz Equation , 1998 .

[19]  Frédéric Nataf,et al.  Construction of a New Domain Decomposition Method for the Stokes Equations , 2007 .

[20]  Bruno Després,et al.  A Domain Decomposition Method for the Helmholtz equation and related Optimal Control Problems , 1996 .

[21]  F. R. Gantmakher The Theory of Matrices , 1984 .

[22]  Martin J. Gander,et al.  Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation , 2003, SIAM J. Numer. Anal..

[23]  Frédéric Nataf,et al.  A domain decomposition preconditioner for an advection–diffusion problem , 2000 .

[24]  Hans Triebel,et al.  BOUNDARY VALUE PROBLEMS FOR ELLIPTIC SYSTEMS By J. T. Wloka, B. Rowley and B. Lawruk: 641 pp., £60.00 (US$89.95), ISBN 0 521 43011 9 (Cambridge University Press, 1995). , 1997 .

[26]  Luca Gerardo-Giorda,et al.  A Robin?Robin preconditioner for advection?diffusion equations with discontinuous coefficients , 2004 .

[27]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[28]  Editors , 1986, Brain Research Bulletin.

[29]  Frédéric Nataf,et al.  The optimized order 2 method : Application to convection-diffusion problems , 2001, Future Gener. Comput. Syst..

[30]  Victorita Dolean,et al.  New constructions of domain decomposition methods for systems of PDEs , 2005 .