A new domain decomposition method for the compressible Euler equations
暂无分享,去创建一个
[1] Stéphane Lanteri,et al. Convergence Analysis of a Schwarz Type Domain Decomposition Method for the Solution of the Euler Equations , 2000 .
[2] Stéphane Lanteri,et al. Convergence analysis of additive Schwarz for the Euler equations , 2004 .
[3] Laurence Halpern,et al. Méthodes de relaxation d'ondes (SWR) pour l'équation de la chaleur en dimension 1 , 2003 .
[4] Charbel Farhat,et al. A Minimum Overlap Restricted Additive Schwarz Preconditioner and Applications in 3D Flow Simulations , 1998 .
[5] Alfio Quarteroni,et al. Domain Decomposition Methods for Systems of Conservation Laws: Spectral Collocation Approximations , 1990, SIAM J. Sci. Comput..
[6] R. Glowinski,et al. Variational formulation and algorithm for trace operation in domain decomposition calculations , 1988 .
[7] Hongkai Zhao,et al. Absorbing boundary conditions for domain decomposition , 1998 .
[8] Peter Lancaster,et al. The theory of matrices , 1969 .
[9] F. Gantmakher,et al. Théorie des matrices , 1990 .
[10] Stéphane Lanteri,et al. Construction of interface conditions for solving the compressible Euler equations by non‐overlapping domain decomposition methods , 2002 .
[11] Martin J. Gander,et al. Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..
[12] Jing Li,et al. A Dual-Primal FETI method for incompressible Stokes equations , 2005, Numerische Mathematik.
[13] J. Mandel. Balancing domain decomposition , 1993 .
[14] Frédéric Nataf,et al. A Robin-Robin preconditioner for an advection-diffusion problem , 1997 .
[15] Jin-Fa Lee,et al. A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays , 2005 .
[16] Morten Bjørhus,et al. A note on the convergence of discretized dynamic iteration , 1995 .
[17] Olof B. Widlund,et al. BDDC Algorithms for Incompressible Stokes Equations , 2006, SIAM J. Numer. Anal..
[18] Frédéric Nataf,et al. Symmetrized Method with Optimized Second-Order Conditions for the Helmholtz Equation , 1998 .
[19] Frédéric Nataf,et al. Construction of a New Domain Decomposition Method for the Stokes Equations , 2007 .
[20] Bruno Després,et al. A Domain Decomposition Method for the Helmholtz equation and related Optimal Control Problems , 1996 .
[21] F. R. Gantmakher. The Theory of Matrices , 1984 .
[22] Martin J. Gander,et al. Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation , 2003, SIAM J. Numer. Anal..
[23] Frédéric Nataf,et al. A domain decomposition preconditioner for an advection–diffusion problem , 2000 .
[24] Hans Triebel,et al. BOUNDARY VALUE PROBLEMS FOR ELLIPTIC SYSTEMS By J. T. Wloka, B. Rowley and B. Lawruk: 641 pp., £60.00 (US$89.95), ISBN 0 521 43011 9 (Cambridge University Press, 1995). , 1997 .
[26] Luca Gerardo-Giorda,et al. A Robin?Robin preconditioner for advection?diffusion equations with discontinuous coefficients , 2004 .
[27] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[28] Editors , 1986, Brain Research Bulletin.
[29] Frédéric Nataf,et al. The optimized order 2 method : Application to convection-diffusion problems , 2001, Future Gener. Comput. Syst..
[30] Victorita Dolean,et al. New constructions of domain decomposition methods for systems of PDEs , 2005 .