Chaos to order: preliminary experiments with a population dynamics models of three trophic levels

Hastings and Powell [Ecology 72(3) (1991) 896] produced a new example of a chaotic population system in a simple tri-trophic food chain with Holling type II functional response. Toxin producing phytoplankton (TPP) reduces the grazing pressure of zooplankton. The present note modifies Hastings and Powell model by introducing an extra mortality term in zooplankton population. Our result suggests that chaotic behaviour less likely occurs in a real food chain dynamics.

[1]  B T Grenfell,et al.  The continuing quest for chaos. , 1993, Trends in ecology & evolution.

[2]  Alan Hastings,et al.  Re–evaluating the omnivory–stability relationship in food webs , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  S. Jørgensen,et al.  Ecosystem as self-organizing critical systems , 1998 .

[4]  Jorgensen,et al.  The growth rate of zooplankton at the edge of chaos: ecological models , 1995, Journal of theoretical biology.

[5]  Stephen R. Carpenter,et al.  The Trophic Cascade in Lakes , 1993 .

[6]  Graeme D. Ruxton,et al.  Chaos in a Three‐Species Food Chain with a Lower Bound on the Bottom Population , 1996 .

[7]  L. Oksanen Trophic levels and trophic dynamics: A consensus emerging? , 1991, Trends in ecology & evolution.

[8]  S. Fretwell Food chain dynamics: the central theory of ecology? , 1987 .

[9]  Torkel Gissel Nielsen,et al.  Effects of a Chrysochromulina polylepis subsurface bloom on the planktonic community , 1990 .

[10]  Graeme D. Ruxton,et al.  Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous regular cycles , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  Alan Hastings,et al.  Chaos in three species food chains , 1994 .

[12]  J. Ives,et al.  Possible mechanisms underlying copepod grazing responses to levels of toxicity in red tide dinoflagellates , 1987 .

[13]  I. Suárez,et al.  Mastering chaos in ecology , 1999 .

[14]  J N Eisenberg,et al.  The structural stability of a three-species food chain model. , 1995, Journal of theoretical biology.

[15]  J. Burkholder,et al.  PFIESTERIA PISCICIDA GEN. ET SP. NOV. (PFIESTERIACEAE FAM. NOV.), A NEW TOXIC DINOFLAGELLATE WITH A COMPLEX LIFE CYCLE AND BEHAVIOR 1 , 1996 .

[16]  Zizhen Li,et al.  Influence of intraspecific density dependence on a three-species food chain with and without external stochastic disturbances , 2002 .

[17]  Kevin S. McCann,et al.  Biological Conditions for Chaos in a Three‐Species Food Chain , 1994 .

[18]  Martin Kaupenjohann,et al.  Parameters, prediction, post-normal science and the precautionary principle: a roadmap for modelling for decision-making , 2001 .

[19]  S Mandal,et al.  Toxin-producing plankton may act as a biological control for planktonic blooms--field study and mathematical modelling. , 2002, Journal of theoretical biology.

[20]  C. Pahl‐Wostl Dynamic structure of a food web model : comparison with a food chain model , 1997 .

[21]  J. J. Gilbert,et al.  Variation in Herbivore Response to Chemical Defenses: Zooplankton Foraging on Toxic Cyanobacteria , 1992 .

[22]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[23]  G. Hallegraeff A review of harmful algal blooms and their apparent global increase , 1993 .