Mixing Time Power Laws at Criticality

We study the mixing time of some Markov chains converging to critical physical models. These models are indexed by a parameter beta and there exists some critical value betac where the model undergoes a phase transition. According to physics lore, the mixing time of such Markov chains is often of logarithmic order outside the critical regime, when beta ne betac, and satisfies-some power law at criticality, when beta = betac. We prove this in the two following settings: 1. Lazy random walk on the critical percolation cluster of "mean-field" graphs, which include the complete graph and random d-regular graphs. The critical mixing time here is of order Theta(n). This answers a question of Benjamini, Kozma and Wormald. 2. Swendsen-Wang dynamics on the complete, graph. The critical mixing time, here is of order Theta(n1/4). This improves results of Cooper, Dyer, Frieze and Rue. In both settings, the main tool is understanding the Markov chain dynamics via properties of critical percolation on the underlying graph.

[1]  Martin E. Dyer,et al.  Path coupling: A technique for proving rapid mixing in Markov chains , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[2]  Lyle A. McGeoch,et al.  A strongly competitive randomized paging algorithm , 1991, Algorithmica.

[3]  P. Tetali Random walks and the effective resistance of networks , 1991 .

[4]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[5]  Lyle A. McGeoch,et al.  Competitive Algorithms for Server Problems , 1990, J. Algorithms.

[6]  R. Ellis,et al.  Entropy, large deviations, and statistical mechanics , 1985 .

[7]  Béla Bollobás,et al.  A Ramsey-type theorem for metric spaces and its applications for metrical task systems and related problems , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[8]  Steven S. Seiden A General Decomposition Theorem for the k-Server Problem , 2002, Inf. Comput..

[9]  Sandy Irani,et al.  Page replacement with multi-size pages and applications to Web caching , 1997, STOC '97.

[10]  Allan Borodin,et al.  An optimal online algorithm for metrical task systems , 1987, STOC.

[11]  Yuval Rabani,et al.  Competitive k-server algorithms , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[12]  Remco van der Hofstad,et al.  Random subgraphs of the 2D Hamming graph: the supercritical phase , 2008, 0801.1607.

[13]  Marek Chrobak,et al.  New results on server problems , 1991, SODA '90.

[14]  J. Salas Dynamic critical behavior of cluster algorithms for 2D Ashkin-Teller and Potts models , 2000 .

[15]  Mark Jerrum,et al.  The Swendsen-Wang process does not always mix rapidly , 1997, STOC '97.

[16]  Y. Peres,et al.  Critical random graphs: Diameter and mixing time , 2007, math/0701316.

[17]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[18]  Amos Fiat,et al.  Competitive Paging Algorithms , 1991, J. Algorithms.

[19]  B. Bollobás The evolution of random graphs , 1984 .

[20]  Christos H. Papadimitriou,et al.  On the k-server conjecture , 1995, JACM.

[21]  Alan M. Frieze,et al.  Mixing properties of the Swendsen-Wang process on classes of graphs , 1999, Random Struct. Algorithms.

[22]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[23]  B. Reed,et al.  The Evolution of the Mixing Rate , 2007, math/0701474.

[24]  Neal E. Young,et al.  Thek-server dual and loose competitiveness for paging , 1994, Algorithmica.

[25]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[26]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[27]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[28]  Martin Dyer,et al.  Mixing properties of the Swendsen–Wang process on the complete graph and narrow grids , 2000 .

[29]  Joel H. Spencer,et al.  Random subgraphs of finite graphs: I. The scaling window under the triangle condition , 2005, Random Struct. Algorithms.

[30]  Sandy Irani,et al.  Randomized Weighted Caching with Two Page Weights , 2002, Algorithmica.

[31]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[32]  Andrew Tomkins,et al.  A polylog(n)-competitive algorithm for metrical task systems , 1997, STOC '97.

[33]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[34]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 2005, computational complexity.

[35]  Asaf Nachmias,et al.  The critical random graph, with martingales , 2005 .

[36]  Yair Bartal,et al.  Randomized k-server algorithms for growth-rate bounded graphs , 2004, SODA '04.

[37]  Joseph Naor,et al.  A Linear Programming Formulation and Approximation Algorithms for the Metric Labeling Problem , 2005, SIAM J. Discret. Math..

[38]  Adam Tauman Kalai,et al.  Finely-competitive paging , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[39]  Alan M. Frieze,et al.  Torpid mixing of some Monte Carlo Markov chain algorithms in statistical physics , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[40]  Kanter,et al.  Mean-field behavior of cluster dynamics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Y. Peres,et al.  Component sizes of the random graph outside the scaling window , 2006, math/0610466.

[42]  Alan D. Sokal,et al.  Dynamic critical behavior of the Swendsen-Wang algorithm: The two-dimensional three-state Potts model revisited , 1997 .

[43]  Ray,et al.  Mean-field study of the Swendsen-Wang dynamics. , 1989, Physical review. A, General physics.

[44]  Marek Chrobak,et al.  Competitive analysis of randomized paging algorithms , 2000, Theor. Comput. Sci..

[45]  Reuven Bar-Yehuda,et al.  A unified approach to approximating resource allocation and scheduling , 2001, JACM.

[46]  S. Alexander,et al.  Density of states on fractals : « fractons » , 1982 .

[47]  Russell Lyons,et al.  Conceptual proofs of L log L criteria for mean behavior of branching processes , 1995 .

[48]  Y. Peres Probability on Trees: An Introductory Climb , 1999 .

[49]  Joseph Naor,et al.  Improved bounds for online routing and packing via a primal-dual approach , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[50]  C. Nash-Williams,et al.  Random walk and electric currents in networks , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[51]  Joseph Naor,et al.  Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue , 2007, ESA.

[52]  Frank Spitzer,et al.  The Galton-Watson Process with Mean One and Finite Variance , 1966 .

[53]  A. D. Sokal,et al.  Dynamic critical behavior of a Swendsen-Wang-Type algorithm for the Ashkin-Teller model , 1996 .

[54]  Nicholas C. Wormald,et al.  Counting connected graphs inside-out , 2005, J. Comb. Theory, Ser. B.

[55]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[56]  Jian-Sheng Wang Critical dynamics of the Swendsen-Wang algorithm in the three-dimensional Ising model , 1990 .

[57]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .