Electrodialysis‐based separation technologies: A critical review

To support a sustainable industrial growth, chemical engineering today faces a cru-cial challenge of meeting the increasing demand for materials and energy. One possi-ble solution is to decrease the equipment size/productivity ratio, energy consumption,and waste generation via process integration and optimization. This review focuses onthe integration of electrodialysis with traditional unit operations and other membraneseparations. Such integrations, due to their diversity and practicability, can be versa-tile tools to meet specific needs from chemical, biochemical, food, and pharmaceuticalindustries.

[1]  Martin Mondor,et al.  Production of soy protein concentrates using a combination of electroacidification and ultrafiltration. , 2004, Journal of agricultural and food chemistry.

[2]  Gopal Pugazhenthi,et al.  Chromium (VI) Separation from Aqueous Solution Using Anion Exchange Membrane , 2005 .

[3]  H. Strathmann,et al.  Limiting current density and water dissociation in bipolar membranes , 1997 .

[4]  N. Gnusin,et al.  Dissociation of Water Molecules in Systems with Ion-exchange Membranes , 1988 .

[5]  T. Xu Ion exchange membranes: State of their development and perspective , 2005 .

[6]  Valko Mavrov,et al.  Regeneration of bonding agents loaded with heavy metals by electrodialysis with bipolar membranes , 2004 .

[7]  Guido Saracco Ionic membrane technologies for the recovery of valuable chemicals from waste waters. , 2003, Annali di chimica.

[8]  Paul Angers,et al.  Precipitation of cheddar cheese whey lipids by electrochemical acidification. , 2005, Journal of agricultural and food chemistry.

[9]  Norbert Adolph Lange,et al.  Handbook of chemistry , 1944 .

[10]  Alain Grasmick,et al.  Use of a membrane bioreactor for denitrification of brine from an electrodialysis process , 2002 .

[11]  J. Pellegrino,et al.  A speculative hybrid reverse osmosis/electrodialysis unit operation , 2007 .

[12]  Kang-Jen Liu,et al.  Application of bipolar membrane technology: A novel process for control of sulfur dioxide from flue gases , 1978 .

[13]  Deng Yong-nan STUDY ON THE APPLICATION OF BIPOLAR MEMBRANE/ ELECTRODIALYSIS (BPM/EDI)TECHNOLOGY , 2002 .

[14]  Martin Mondor,et al.  Effect of electro-acidification treatment and ionic environment on soy protein extract particle size distribution and ultrafiltration permeate flux , 2004 .

[15]  Laurent Bazinet,et al.  Simultaneous separation of acid and basic bioactive peptides by electrodialysis with ultrafiltration membrane. , 2006, Journal of biotechnology.

[16]  F. Helfferich,et al.  Ion-exchange membrane separation processes (Membrane science and technology series, vol. 9), H. Strathmann. Elsevier, Amsterdam (2004), ISBN: 044450236-X , 2005 .

[17]  Tongwen Xu,et al.  Regenerating fuel-gas desulfurizing agents by using bipolar membrane electrodialysis (BMED): effect of molecular structure of alkanolamines on the regeneration performance. , 2007, Environmental science & technology.

[18]  Chi-Woo Lee,et al.  Desalination of a thermal power plant wastewater by membrane capacitive deionization , 2006 .

[19]  Kang-Jen Liu,et al.  Membrane electrodialysis process for recovery of sulfur dioxide from power plant stack gases , 1978 .

[20]  Laurent Bazinet,et al.  Electrodialytic Phenomena and Their Applications in the Dairy Industry: A Review , 2005, Critical reviews in food science and nutrition.

[21]  Xu Tongwen,et al.  Electrodialysis processes with bipolar membranes (EDBM) in environmental protection—a review , 2002 .

[22]  C Vandecasteele,et al.  Electrodialysis and nanofiltration of surface water for subsequent use as infiltration water. , 2003, Water research.

[23]  J Amiot,et al.  Bipolar membrane electroacidification to produce bovine milk casein isolate. , 1999, Journal of agricultural and food chemistry.

[24]  Chuanhui Huang,et al.  Electrodialysis with bipolar membranes for sustainable development. , 2006, Environmental science & technology.

[25]  E. Korngold,et al.  Electrodialysis processes using ion exchange resins between membranes , 1975 .

[26]  Z. Matějka,et al.  Continuous production of high‐purity water by electro‐deionisation , 2007 .

[27]  Denis Ippersiel,et al.  Recovery of magnesium and protein from soy tofu whey by electrodialytic configurations , 1999 .

[28]  H. Strathmann,et al.  Process economics of the electrodialytic water dissociation for the production of acid and base , 2000 .

[29]  Jos T. F. Keurentjes,et al.  Electrodialysis System for Large-Scale Enantiomer Separation , 2001 .

[30]  Tongwen Xu,et al.  Regenerating flue-gas desulfurizing agents by bipolar membrane electrodialysis , 2006 .

[31]  Alain Grasmick,et al.  Denitrification of drinking water by the association of an electrodialysis process and a membrane bioreactor: feasibility and application , 2001 .

[32]  Gerhart Eigenberger,et al.  The production of high purity water by continuous electrodeionization with bipolar membranes: Influence of the anion-exchange membrane permselectivity , 2006 .

[33]  Christine Moresoli,et al.  Production of soy protein concentrates/isolates: traditional and membrane technologies , 2006 .

[34]  Peter Wasserscheid,et al.  Synthesis of [EMIM]OH via bipolar membrane electrodialysis – precursor production for the combinatorial synthesis of [EMIM]-based ionic liquids , 2007 .

[35]  Y. Oren,et al.  Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review) , 2008 .

[36]  P. Pfromm,et al.  Coupling reverse osmosis with electrodialysis to isolate natural organic matter from fresh waters. , 2006, Water research.

[37]  R. Kim,et al.  Development of Novel Wastewater Reclamation System Using Microfiltration with Advanced New Membrane Material and Electrodialysis , 2006 .

[38]  S. Koter,et al.  Electromembrane Processes in Environment Protection , 2000 .

[39]  J. M. Casas,et al.  Electrowinning of copper in a lab‐scale squirrel‐cage cell with anion membrane , 2005 .

[40]  G. Gohil,et al.  Electrochemical Membrane Reactor: Single-Step Separation and Ion Substitution for the Recovery of Lactic Acid from Lactate Salts , 2007 .

[41]  Seung-Hyeon Moon,et al.  Effect of current density on ionic transport and water dissociation phenomena in a continuous electrodeionization (CEDI) , 2007 .

[42]  Shoichiro Yoshida,et al.  Regeneration Mechanism of Ion Exchange Materials in Electrodeionization System , 2002 .

[43]  T. Xu,et al.  Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments , 2007 .

[44]  Laurent Bazinet,et al.  Improved peptide fractionation by electrodialysis with ultrafiltration membrane: Influence of ultrafiltration membrane stacking and electrical field strength , 2007 .

[45]  C. Innocent,et al.  Electrodialysis with ion exchange membranes in organic media , 2005 .

[46]  Guiqing Zhang,et al.  Production of high-purity water by continuous electrodeionization with bipolar membranes: Influence of concentrate and protection compartment , 2008 .

[47]  K. D. Kulbe,et al.  Recovery of organic acids with high molecular weight using a combined electrodialytic process , 2000 .

[48]  Joseph Arul,et al.  Chitosan solubilization by bipolar membrane electro-acidification , 2006 .

[49]  R. Audinos,et al.  Ion-exchange membrane processes for clean industrial chemistry , 1997 .

[50]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[51]  Mostefa Kameche,et al.  Electrodialysis in water-ethanol solutions: Application to the acidification of organic salts , 2003 .

[52]  Srinivasan Sridhar,et al.  Electrodialysis in a non-aqueous medium: A clean process for the production of acetoacetic ester , 1997 .

[53]  Wenhua Lu,et al.  Recovery of glutamic acid from isoelectric supernatant using electrodialysis , 2007 .

[54]  Denis Ippersiel,et al.  Bipolar-membrane electrodialysis: Applications of electrodialysis in the food industry , 1998 .

[55]  Matthias Wessling,et al.  Asymmetric bipolar membranes in acid-base electrodialysis , 2002 .