Polarizable empirical force field for nitrogen‐containing heteroaromatic compounds based on the classical Drude oscillator

The polarizable empirical CHARMM force field based on the classical Drude oscillator has been extended to the nitrogen‐containing heteroaromatic compounds pyridine, pyrimidine, pyrrole, imidazole, indole, and purine. Initial parameters for the six‐membered rings were based on benzene with nonbond parameter optimization focused on the nitrogen atoms and adjacent carbons and attached hydrogens. In the case of five‐member rings, parameters were first developed for imidazole and transferred to pyrrole. Optimization of all parameters was performed against an extensive set of quantum mechanical and experimental data. Ab initio data were used for the determination of initial electrostatic parameters, the vibrational analysis, and in the optimization of the relative magnitudes of the Lennard‐Jones (LJ) parameters, through computations of the interactions of dimers of model compounds, model compound‐water interactions, and interactions of rare gases with model compounds. The absolute values of the LJ parameters were determined targeting experimental heats of vaporization, molecular volumes, heats of sublimation, crystal lattice parameters, and free energies of hydration. Final scaling of the polarizabilities from the gas‐phase values by 0.85 was determined by reproduction of the dielectric constants of pyridine and pyrrole. The developed parameter set was extensively validated against additional experimental data such as diffusion constants, heat capacities, and isothermal compressibilities, including data as a function of temperature. © 2008 Wiley Periodicals, Inc. J Comput Chem 2009

[1]  P Hobza,et al.  Structure, energetics, and dynamics of the nucleic Acid base pairs: nonempirical ab initio calculations. , 1999, Chemical reviews.

[2]  Pavel Hobza,et al.  N−H···π Interactions in Indole···Benzene-h6,d6 and Indole···Benzene-h6,d6 Radical Cation Complexes. Mass Analyzed Threshold Ionization Experiments and Correlated ab Initio Quantum Chemical Calculations , 2003 .

[3]  F. Burden,et al.  Nuclear quadrupole coupling in the microwave spectrum of imidazole , 1976 .

[4]  J. Epstein,et al.  The crystal structure of imidazole at 103 K by neutron diffraction , 1979 .

[5]  Evangelos Zoidis,et al.  Far infrared spectroscopic studies of the molecular dynamics and interactions of pyridine in organic solvents , 1996 .

[6]  Paul Wormell,et al.  Singlet and triplet valence excited states of pyrimidine , 2003 .

[7]  E. Castellucci,et al.  High resolution optothermal spectroscopy of pyridine in the S1 state , 1997 .

[8]  H. Robertson,et al.  The r.alpha. structures of pyrazine and pyrimidine by the combined analysis of electron diffraction, liquid-crystal NMR, and rotational data , 1988 .

[9]  Alexander D. MacKerell,et al.  Determination of Electrostatic Parameters for a Polarizable Force Field Based on the Classical Drude Oscillator. , 2005, Journal of chemical theory and computation.

[10]  Jeffrey R. Reimers,et al.  The Low-Lying Excited States of Pyridine , 2000 .

[11]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[12]  Alexander D. MacKerell,et al.  Polarizable empirical force field for aromatic compounds based on the classical drude oscillator. , 2007, The journal of physical chemistry. B.

[13]  Georg Jansen,et al.  Interaction energy contributions of H-bonded and stacked structures of the AT and GC DNA base pairs from the combined density functional theory and intermolecular perturbation theory approach. , 2006, Journal of the American Chemical Society.

[14]  Christopher M Baker,et al.  Modeling Aromatic Liquids:  Toluene, Phenol, and Pyridine. , 2007, Journal of chemical theory and computation.

[15]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[16]  Liliana Wroblewska,et al.  A theoretical and experimental 14N NMR study of association of pyridine , 2001 .

[17]  Pavel Hobza,et al.  Assessment of the MP2 method, along with several basis sets, for the computation of interaction energies of biologically relevant hydrogen bonded and dispersion bound complexes. , 2007, The journal of physical chemistry. A.

[18]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[19]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[20]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[21]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard‐Jones parameters for polar‐neutral compounds , 2002, J. Comput. Chem..

[22]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton , 1993 .

[23]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[24]  Alexander D. MacKerell,et al.  Polarizable empirical force field for alkanes based on the classical Drude oscillator model. , 2005, The journal of physical chemistry. B.

[25]  Nathan A. Baker,et al.  Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum. , 2007, The Journal of chemical physics.

[26]  George W. Gokel,et al.  Dean's handbook of organic chemistry , 2003 .

[28]  O. A. V. Lilienfeld,et al.  Predicting noncovalent interactions between aromatic biomolecules with London-dispersion-corrected DFT. , 2007, The journal of physical chemistry. B.

[29]  Bernard R. Brooks,et al.  Pressure-Based Long-Range Correction for Lennard-Jones Interactions in Molecular Dynamics Simulations: Application to Alkanes and Interfaces , 2004 .

[30]  Alexander D. MacKerell,et al.  An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids , 2000 .

[31]  M. Klein,et al.  A molecular dynamics study of the crystalline and liquid phases of pyridine , 1989 .

[32]  E. S. Domalski,et al.  Erratum: Heat Capacities and Entropies of Organic Compounds in the Condensed Phase, Volume III [J. P , 1997 .

[33]  Molecular Flexibility of N-Acyl Heterocycles Studied Using 1 3C NMR Spectroscopy and Computational Chemistry , 1998 .

[34]  Shyamal K. Nath,et al.  New forcefield parameters for branched hydrocarbons , 2001 .

[35]  G. J. Durant,et al.  Theoretical studies on hydration of pyrrole, imidazole, and protonated imidazole in the gas phase and aqueous solution , 1993 .

[36]  M. Muir Physical Chemistry , 1888, Nature.

[37]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard–Jones parameters , 1998 .

[38]  Benoît Roux,et al.  Hydration of Amino Acid Side Chains: Nonpolar and Electrostatic Contributions Calculated from Staged Molecular Dynamics Free Energy Simulations with Explicit Water Molecules , 2004 .

[39]  P. J. Wheatley The crystal and molecular structure of pyrimidine , 1960 .

[40]  Shyamal K. Nath,et al.  A new united atom force field for α-olefins , 2001 .

[41]  C. David Sherrill,et al.  Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-Displaced Configurations , 2004 .

[42]  K. Sagarik,et al.  Statistical mechanical simulations on properties of liquid pyridine , 1995 .

[43]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[44]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[45]  Stefan Grimme,et al.  Van der Waals interactions in aromatic systems: structure and energetics of dimers and trimers of pyridine. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[46]  Alexander D. MacKerell,et al.  A polarizable model of water for molecular dynamics simulations of biomolecules , 2006 .

[47]  R. Fausto,et al.  Infrared spectra of pyrazine, pyrimidine and pyridazine in solid argon , 2006 .

[48]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[49]  Benoît Roux,et al.  Atomic Level Anisotropy in the Electrostatic Modeling of Lone Pairs for a Polarizable Force Field Based on the Classical Drude Oscillator. , 2006, Journal of chemical theory and computation.

[50]  Pavel Hobza,et al.  Toward true DNA base-stacking energies: MP2, CCSD(T), and complete basis set calculations. , 2002, Journal of the American Chemical Society.

[51]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[52]  David E. Bernholdt,et al.  High performance computational chemistry: An overview of NWChem a distributed parallel application , 2000 .

[53]  Richard Goddard,et al.  Pyrrole and a Co-crystal of 1H- and 2H-1,2,3-Triazole , 1997 .

[54]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[55]  Eugene S. Domalski,et al.  Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III , 1990 .

[56]  Paul Tavan,et al.  The polarizability of point-polarizable water models: density functional theory/molecular mechanics results. , 2008, The journal of physical chemistry. B.

[57]  Alexander D. MacKerell,et al.  Conformational Properties of the Deoxyribose and Ribose Moieties of Nucleic Acids: A Quantum Mechanical Study , 1998 .

[58]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[59]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[60]  P. Roychowdhury,et al.  The crystal structure of indole , 1975 .

[61]  R. E. Marsh,et al.  The crystal and molecular structure of purine. , 1965, Acta crystallographica.

[62]  Pengyu Y. Ren,et al.  Consistent treatment of inter‐ and intramolecular polarization in molecular mechanics calculations , 2002, J. Comput. Chem..

[63]  J. Lehn,et al.  Nuclear relaxation and molecular properties , 1969 .

[64]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[65]  W. Litchman A study of the interactions of pyridine in solution by means of 13C NMR , 1974 .

[66]  P. Lukins,et al.  Magnetic anisotropies and relative aromaticities of pyrrole, pyrazole, imidazole and their N-methyl derivatives , 1981 .

[67]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[68]  Ivano Tavernelli,et al.  Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.

[69]  Sylvio Canuto,et al.  A Monte Carlo–quantum mechanics study of the spectroscopic properties of molecules in solution , 2001 .

[70]  O. Steinhauser,et al.  A molecular dynamics study of the dielectric properties of aqueous solutions of alanine and alanine dipeptide. , 2004, The Journal of chemical physics.

[71]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[72]  Bernard R. Brooks,et al.  New spherical‐cutoff methods for long‐range forces in macromolecular simulation , 1994, J. Comput. Chem..

[73]  D. Mootz,et al.  Crystal structures of pyridine and pyridine trihydrate , 1981 .

[74]  F. Ureña,et al.  A new insight into the vibrational analysis of pyridine. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[75]  Brian W. Hopkins,et al.  Ab initio studies of π...π interactions: The effects of quadruple excitations , 2004 .

[76]  R. Fèvre,et al.  233. Molecular polarisability. Ellipsoids of polarisability for certain fundamental heterocycles , 1959 .

[77]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[78]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[79]  Y. Marcus,et al.  The compressibility of liquids at ambient temperature and pressure , 1997 .

[80]  A. Rappé,et al.  Ab Initio Calculation of Nonbonded Interactions: Are We There Yet? , 2000 .

[81]  D. R. Douslin,et al.  Pyrrole: chemical thermodynamic properties , 1967 .

[82]  Weitao Yang,et al.  Local softness and chemical reactivity in the molecules CO, SCN− and H2CO , 1988 .

[83]  W. Moomaw,et al.  Electronic states of azabenzenes and azanaphthalenes: A revised and extended critical review , 1988 .

[84]  Physical Review , 1965, Nature.

[85]  T. Takagi,et al.  P−ρ−T Data of Liquids: Summarization and Evaluation. 8. Miscellaneous Compounds , 2002 .

[86]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[87]  G. Kearley,et al.  Inelastic Neutron Scattering Spectrum and Quantum Mechanical Calculations on the Internal Vibrations of Pyrimidine , 1999 .

[88]  S. Canuto,et al.  A Monte Carlo–quantum mechanical study of the solvatochromism of pyrimidine in water and in carbon tetrachloride , 2001 .

[89]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[90]  Kenneth J. Miller,et al.  Additivity methods in molecular polarizability , 1990 .

[91]  Journal of Chemical Physics , 1932, Nature.

[92]  B. Mishra,et al.  π-π Interaction in Pyridine , 2005 .

[93]  Alexander D. MacKerell,et al.  A simple polarizable model of water based on classical Drude oscillators , 2003 .

[94]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[95]  R. Sabbah,et al.  Thermodynamique de composés azotés: II. — *Étude thermochimique des acides aminobenzoïques, de la pyrimidine, de l’uracile et de la thymine* * , 1977 .

[96]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[97]  Matthew L. Leininger,et al.  Accurate structures and binding energies for stacked uracil dimers , 2002 .

[98]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[99]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[100]  José R. S. Politi,et al.  Theoretical studies of liquids by computer simulations: the methanol-pyridine mixture , 1996 .

[101]  John Aurie Dean,et al.  Handbook of Organic Chemistry , 1987 .

[102]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[103]  P Hobza,et al.  Noncovalent interactions: a challenge for experiment and theory. , 2000, Chemical reviews.

[104]  Keith Bonin,et al.  Electric-Dipole Polarizabilities Of Atoms, Molecules, And Clusters , 1997 .

[105]  O. Nagy,et al.  Molecular dynamics in hydrogen bond forming environments. The role of hydrophilic-hydrophobic interactions in pyridine-water mixtures , 1988 .

[106]  Alan R. Katritzky,et al.  Handbook of heterocyclic chemistry , 1985 .

[107]  G. Kearley,et al.  Inelastic neutron scattering study of methyl tunnelling in an oriented single-crystal of 2,6-dimethylpyrazine at low temperature and rotational–potential calculations , 1998 .

[108]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[109]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[110]  Soichi Wakatsuki Acta Crystallographica , 1948, Nature.

[111]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[112]  G. Sørensen,et al.  Microwave spectra of isotopic pyrroles. Molecular structure, dipole moment, and 14N quadrupole coupling constants of pyrrole , 1969 .

[113]  C. David Sherrill,et al.  High-Accuracy Quantum Mechanical Studies of π−π Interactions in Benzene Dimers , 2006 .

[114]  J. Šponer,et al.  MP2 and CCSD(T) study on hydrogen bonding, aromatic stacking and nonaromatic stacking , 1997 .

[115]  George A. Kaminski,et al.  Development of an Accurate and Robust Polarizable Molecular Mechanics Force Field from ab Initio Quantum Chemistry , 2004 .

[116]  A. Roche,et al.  Organic Chemistry: , 1982, Nature.

[117]  J. D. de Pablo,et al.  Simulation of vapour-liquid equilibria for branched alkanes , 2000 .

[118]  P. T. V. Duijnen,et al.  Molecular and Atomic Polarizabilities: Thole's Model Revisited , 1998 .

[119]  J. Reimers,et al.  The lowest singlet (n,pi*) and (pi,pi*) excited states of the hydrogen-bonded complex between water and pyrazine. , 2002, The journal of physical chemistry. A.

[120]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[121]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[122]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[123]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules J. Am. Chem. Soc. 1995, 117, 5179−5197 , 1996 .

[124]  D. Bernholdt,et al.  Large-scale correlated electronic structure calculations: the RI-MP2 method on parallel computers , 1996 .

[125]  J. D. Bell,et al.  The crystal structure of imidazole by neutron diffraction at 20°C and –150°C , 1977 .

[126]  P. Wormell,et al.  Vibronic analyses of the lowest singlet–singlet and singlet–triplet band systems of pyridazine , 2000 .

[127]  Alexander D. MacKerell,et al.  Polarizable empirical force field for the primary and secondary alcohol series based on the classical Drude model. , 2007, Journal of chemical theory and computation.