Microscopic modeling and optimal operation of thermal atomic layer deposition

[1]  Prashant Mhaskar,et al.  Modeling and Control of Batch Processes: Theory and Applications , 2018 .

[2]  Luis A. Ricardez-Sandoval,et al.  Optimization and control of a thin film growth process: A hybrid first principles/artificial neural network based multiscale modelling approach , 2018, Comput. Chem. Eng..

[3]  Prashanth Siddhamshetty,et al.  Approximate Dynamic Programming Based Control of Proppant Concentration in Hydraulic Fracturing , 2018, Mathematics.

[4]  Panagiotis D. Christofides,et al.  Multiscale three-dimensional CFD modeling for PECVD of amorphous silicon thin films , 2018, Comput. Chem. Eng..

[5]  Luis A. Ricardez-Sandoval,et al.  Robust dynamic optimization in heterogeneous multiscale catalytic flow reactors using polynomial chaos expansion , 2017 .

[6]  Grigoriy Kimaev,et al.  A comparison of efficient uncertainty quantification techniques for stochastic multiscale systems , 2017 .

[7]  Jane P. Chang,et al.  Progress and prospects in nanoscale dry processes: How can we control atomic layer reactions? , 2017 .

[8]  J. Bartha,et al.  Temperature dependence of the sticking coefficients of bis-diethyl aminosilane and trimethylaluminum in atomic layer deposition , 2017 .

[9]  Martin Oettel,et al.  Experimental and simulation approach for process optimization of atomic layer deposited thin films in high aspect ratio 3D structures , 2017 .

[10]  N. Dasgupta,et al.  Atomic Layer Deposition for Energy and Environmental Applications , 2016 .

[11]  Se-Kyu Oh,et al.  Iterative learning model predictive control for constrained multivariable control of batch processes , 2016, Comput. Chem. Eng..

[12]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[13]  P. Jha,et al.  First-principles study of water adsorption on α-SiO2 [110] surface , 2016 .

[14]  Shabnam Rasoulian,et al.  Stochastic nonlinear model predictive control applied to a thin film deposition process under uncertainty , 2016 .

[15]  Shabnam Rasoulian,et al.  A robust nonlinear model predictive controller for a multiscale thin film deposition process , 2015 .

[16]  Shabnam Rasoulian,et al.  Robust multivariable estimation and control in an epitaxial thin film growth process under uncertainty , 2015 .

[17]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[18]  Panagiotis D. Christofides,et al.  A method for handling batch-to-batch parametric drift using moving horizon estimation: Application to run-to-run MPC of batch crystallization , 2015 .

[19]  Panagiotis D. Christofides,et al.  Run-to-Run-Based Model Predictive Control of Protein Crystal Shape in Batch Crystallization , 2015 .

[20]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[21]  Shabnam Rasoulian,et al.  Uncertainty analysis and robust optimization of multiscale process systems with application to epitaxial thin film growth , 2014 .

[22]  C. Murray,et al.  Effect of reaction mechanism on precursor exposure time in atomic layer deposition of silicon oxide and silicon nitride. , 2014, ACS applied materials & interfaces.

[23]  Helena Ronkainen,et al.  Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors , 2014 .

[24]  Mahdi Shirazi,et al.  Atomistic kinetic Monte Carlo study of atomic layer deposition derived from density functional theory , 2014, J. Comput. Chem..

[25]  Hansong Cheng,et al.  First-Principles Study of a Full Cycle of Atomic Layer Deposition of SiO2 Thin Films with Di(sec-butylamino)silane and Ozone , 2013 .

[26]  A. Brand,et al.  Semiconductor Logic Technology Innovation to Achieve Sub-10 nm Manufacturing , 2013, IEEE Journal of the Electron Devices Society.

[27]  Arthur D. Sherman,et al.  Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applications , 2013 .

[28]  Panagiotis D. Christofides,et al.  Crystal shape modeling and control in protein crystal growth , 2013 .

[29]  Yeong-Cheol Kim,et al.  Adsorption and surface reaction of bis-diethylaminosilane as a Si precursor on an OH-terminated Si (0 0 1) surface , 2012 .

[30]  Hansong Cheng,et al.  On the Mechanisms of SiO2 Thin-Film Growth by the Full Atomic Layer Deposition Process Using Bis(t-butylamino)silane on the Hydroxylated SiO2(001) Surface , 2012 .

[31]  Wmm Erwin Kessels,et al.  Plasma-Assisted ALD for the Conformal Deposition of SiO2: Process, Material and Electronic Properties , 2012 .

[32]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[33]  P. Christofides,et al.  Dynamics and Lattice-Size Dependence of Surface Mean Slope in Thin-Film Deposition , 2011 .

[34]  Kirk Scott Cuthill,et al.  Impact of Aminosilane Precursor Structure on Silicon Oxides by Atomic Layer Deposition , 2011 .

[35]  P. Christofides,et al.  Dependence of film surface roughness and slope on surface migration and lattice size in thin film deposition processes , 2010 .

[36]  Hcm Harm Knoops,et al.  Conformality of Plasma-Assisted ALD: Physical Processes and Modeling , 2010 .

[37]  Xiao Hu,et al.  Template‐Directed Liquid ALD Growth of TiO2 Nanotube Arrays: Properties and Potential in Photovoltaic Devices , 2010 .

[38]  N. Castin,et al.  Calculation of proper energy barriers for atomistic kinetic Monte Carlo simulations on rigid lattice with chemical and strain field long-range effects using artificial neural networks. , 2010, The Journal of chemical physics.

[39]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[40]  Francis J. Doyle,et al.  Survey on iterative learning control, repetitive control, and run-to-run control , 2009 .

[41]  Chenggang Zhou,et al.  On the Dissociative Chemisorption of Tris(dimethylamino)silane on Hydroxylated SiO2(001) Surface , 2009 .

[42]  Dave Winkler,et al.  Bayesian Regularization of Neural Networks , 2009, Artificial Neural Networks.

[43]  A. Dkhissi,et al.  Multiscale Modeling of the Atomic Layer Deposition of HfO2 Thin Film Grown on Silicon: How to Deal with a Kinetic Monte Carlo Procedure. , 2008, Journal of chemical theory and computation.

[44]  Jane P. Chang,et al.  Electrical performance of Al2O3 gate dielectric films deposited by atomic layer deposition on 4H-SiC , 2007 .

[45]  Yasuo Kimura,et al.  Infrared Study of Tris(dimethylamino)silane Adsorption and Ozone Irradiation on Si(100) Surfaces for ALD of SiO2 , 2007 .

[46]  Roberto P. Domingos,et al.  Artificial intelligence applied to atomistic kinetic Monte Carlo simulations in Fe–Cu alloys , 2007 .

[47]  Satoshi Kamiyama,et al.  Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors , 2006 .

[48]  Antonios Armaou,et al.  Control and optimization of multiscale process systems , 2006, Comput. Chem. Eng..

[49]  Jay H. Lee,et al.  Approximate dynamic programming-based approaches for input-output data-driven control of nonlinear processes , 2005, Autom..

[50]  Panagiotis D. Christofides,et al.  Feedback control of surface roughness of GaAs [001] thin films using kinetic Monte-Carlo models , 2004, Proceedings of the 2004 American Control Conference.

[51]  James C. Greer,et al.  Simulating the atomic layer deposition of alumina from first principles , 2004 .

[52]  A. Kersch,et al.  A model for Al2O3 ALD conformity and deposition rate from oxygen precursor reactivity , 2003 .

[53]  T. Nishiguchi,et al.  High-quality SiO2 film formation by highly concentrated ozone gas at below 600°C , 2002 .

[54]  David J. Srolovitz,et al.  Kinetic Monte Carlo Simulation of Chemical Vapor Deposition , 2002 .

[55]  J. Dumesic,et al.  Kinetics of heterogeneous catalytic reactions: Analysis of reaction schemes , 2001 .

[56]  Daniel Svozil,et al.  Introduction to multi-layer feed-forward neural networks , 1997 .

[57]  Steven M. George,et al.  Surface Chemistry for Atomic Layer Growth , 1996 .

[58]  B. El-Kareh Fundamentals of Semiconductor Processing Technology , 1994 .

[59]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[60]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[61]  Krishna C. Saraswat,et al.  Monte Carlo low pressure deposition profile simulations , 1991 .

[62]  Masato Ikegawa,et al.  Deposition Profile Simulation Using the Direct Simulation Monte Carlo Method , 1989 .

[63]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[64]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .