Viscosity kernel of molecular fluids: butane and polymer melts.

The wave-vector dependent shear viscosities for butane and freely jointed chains have been determined. The transverse momentum density and stress autocorrelation functions have been determined by equilibrium molecular dynamics in both atomic and molecular hydrodynamic formalisms. The density, temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3-6 atomic diameters, which means that generalized hydrodynamics must be applied in predicting the flow properties of molecular fluids on length scales where the strain rate varies sufficiently in the order of these dimensions (e.g., nanofluidic flows).

[1]  A. Papoulis,et al.  The Fourier Integral and Its Applications , 1963 .

[2]  Denis J. Evans,et al.  Constrained molecular dynamics: Simulations of liquid alkanes with a new algorithm , 1986 .

[3]  Gary P. Morriss,et al.  Computer simulation study of the comparative rheology of branched and linear alkanes , 1992 .

[4]  K. Binder,et al.  Molecular-dynamics simulations of the thermal glass transition in polymer melts: α-relaxation behavior , 1997, cond-mat/9710132.

[5]  B. D. Todd,et al.  Erratum: “Comparison of planar shear flow and planar elongational flow for systems of small molecules” [J. Chem. Phys. 113, 9122 (2000)] , 2001 .

[6]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[7]  B. D. Todd,et al.  Diffusion of linear polymer melts in shear and extensional flows. , 2009, The Journal of chemical physics.

[8]  Martin Kröger,et al.  Rheology and structural changes of polymer melts via nonequilibrium molecular dynamics , 1993 .

[9]  C. Hoheisel,et al.  Behavior of collective time correlation functions in liquids composed of polyatomic molecules , 1991 .

[10]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[11]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[12]  Billy D. Todd,et al.  Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications , 2007 .

[13]  J. Sturm,et al.  Micro- and nanofluidics for DNA analysis , 2004, Analytical and bioanalytical chemistry.

[14]  J. Eijkel,et al.  Nanofluidics: what is it and what can we expect from it? , 2005 .

[15]  András Baranyai,et al.  New algorithm for constrained molecular-dynamics simulation of liquid benzene and naphthalene , 1990 .

[16]  C. W. Gear,et al.  Numerical Integration of Ordinary Differential Equations , 2021, Numerical Methods and Optimization.

[17]  Keith E. Gubbins,et al.  Poiseuille flow of Lennard-Jones fluids in narrow slit pores , 2000 .

[18]  Susan A. Somers,et al.  Microscopic dynamics of flow in molecularly narrow pores , 1990 .

[19]  G. Morriss,et al.  A constraint algorithm for the computer simulation of complex molecular liquids , 1991 .

[20]  B. D. Todd,et al.  An extended analysis of the viscosity kernel for monatomic and diatomic fluids , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  B. D. Todd,et al.  Parameterization of the nonlocal viscosity kernel for an atomic fluid. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  C. Hoheisel,et al.  Computation of transport coefficients of liquid benzene and cyclohexane using rigid multicenter pair interaction models , 1992 .

[23]  Denis J. Evans,et al.  On the nonlinear Born effect , 1987 .

[24]  P. Daivis,et al.  Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane , 1994 .

[25]  B. D. Todd,et al.  Nonlinear shear and elongational rheology of model polymer melts at low strain rates , 2007 .

[26]  H. Davis,et al.  A tractable molecular theory of flow in strongly inhomogeneous fluids , 1988 .

[27]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[28]  Erratum: “Viscosity of confined inhomogeneous nonequilibrium fluids” [J. Chem. Phys. 121, 10778 (2004)] , 2005 .

[29]  E. van der Giessen,et al.  Molecular-dynamics simulation study of the glass transition in amorphous polymers with controlled chain stiffness. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  M. P. Allen Atomic and molecular representations of molecular hydrodynamic variables , 1984 .

[31]  R. F. Snider,et al.  Symmetry of the pressure tensor in macromolecular fluids , 1976 .

[32]  Palmer Transverse-current autocorrelation-function calculations of the shear viscosity for molecular liquids. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[34]  I. Omelyan,et al.  Wavevector- and frequency-dependent shear viscosity of water: the modified collective mode approach and molecular dynamics calculations , 2005 .

[35]  D. Evans On the generalized hydrodynamics of polyatomic fluids , 1976 .

[36]  B. D. Todd,et al.  Nonlocal shear stress for homogeneous fluids. , 2008, Physical review letters.

[37]  B. D. Todd,et al.  Comparison of planar shear flow and planar elongational flow for systems of small molecules , 2000 .

[38]  Søren Toxvaerd,et al.  Molecular dynamics calculation of the equation of state of alkanes , 1990 .

[39]  B. Alder,et al.  Generalized transport coefficients for hard spheres , 1983 .

[40]  B. D. Todd,et al.  A comparison of model linear chain molecules with constrained and flexible bond lengths under planar Couette and extensional flows , 2009 .

[41]  U. C. Klomp,et al.  Comment on: Rheology of n‐alkanes by nonequilibrium molecular dynamics , 1991 .

[42]  Billy D. Todd,et al.  DEPARTURE FROM NAVIER-STOKES HYDRODYNAMICS IN CONFINED LIQUIDS , 1997 .

[43]  Roger Edberg,et al.  Rheology of n‐alkanes by nonequilibrium molecular dynamics , 1987 .

[44]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid alkanes , 1978 .

[45]  Jay L. Devore,et al.  Introduction to Statistics and Data Analysis , 2000 .

[46]  Xiaobo Nie,et al.  A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow , 2004, Journal of Fluid Mechanics.

[47]  L. Verlet,et al.  Molecular dynamics calculations of transport coefficients , 1987 .

[48]  木村 充 A.Papoulis: The Fourier Integral and its Applications. McGraw-Hill, New York 1962, 306頁, 15×23cm, $12.00. , 1963 .

[49]  B. D. Todd,et al.  Viscosity of confined inhomogeneous nonequilibrium fluids. , 2004, The Journal of chemical physics.

[50]  C. W. Gear The numerical integration of ordinary differential equations , 1967 .

[51]  Billy D. Todd,et al.  Cell neighbor list method for planar elongational flow: rheology of a diatomic fluid , 2003 .

[52]  P. Daivis,et al.  Transport coefficients of liquid butane near the boiling point by equilibrium molecular dynamics , 1995 .

[53]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[54]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid n-butane near its boiling point , 1975 .

[55]  R. F. Snider,et al.  Differences in fluid dynamics associated with an atomic versus a molecular description of the same system , 1976 .