The Couette–Poiseuille flow of a suspension modeled as a modified third-grade fluid

In this paper, we modify the thermodynamically compatible third-grade fluid model by introducing a shear-rate- and volume-fraction-dependent viscosity into the equation. With this new model, it is possible to predict not only the normal stress differences, but also the variable viscosity observed in many suspensions. We study the Couette–Poiseuille flow of such a fluid between two horizontal flat plates. The steady fully developed flow equations are made dimensionless and are solved numerically; the effects of different dimensionless numbers are discussed.

[1]  S. L. Soo Particulates and Continuum , 2018 .

[2]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[3]  Quanhua Sun,et al.  On the Significance of Normal Stress Effects in the Flow of Glaciers , 1987, Journal of Glaciology.

[4]  M. Massoudi,et al.  Fully developed flow of a modified second grade fluid with temperature dependent viscosity , 2001 .

[5]  Clifford Ambrose Truesdell,et al.  The mechanical foundations of elasticity and fluid dynamics , 1952 .

[6]  Christopher W. Macosko,et al.  Rheology: Principles, Measurements, and Applications , 1994 .

[7]  M. Massoudi,et al.  Flow of a generalized second grade non-Newtonian fluid with variable viscosity , 2004 .

[8]  Kumbakonam R. Rajagopal,et al.  On implicit constitutive theories for fluids , 2006, Journal of Fluid Mechanics.

[9]  L. S. Leung,et al.  Pneumatic Conveying of Solids: A Theoretical and Practical Approach , 1993 .

[10]  Mehrdad Massoudi,et al.  On some generalizations of the second grade fluid model , 2008 .

[11]  Mehrdad Massoudi,et al.  On the thermodynamics of some generalized second-grade fluids , 2010 .

[12]  R. L. Braun,et al.  Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks , 1986 .

[13]  An approach to non-Newtonian fluid mechanics , 1984 .

[14]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[15]  K. Rajagopal On Boundary Conditions for Fluids of the Differential Type , 1995 .

[16]  Kumbakonam R. Rajagopal,et al.  Thermodynamics and stability of fluids of third grade , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  D. Mansutti,et al.  Flow of a shear thinning fluid between intersecting planes , 1991 .

[18]  Kumbakonam R. Rajagopal,et al.  A note on unsteady unidirectional flows of a non-Newtonian fluid , 1982 .

[19]  脇屋 正一,et al.  J. Happel and H. Brenner: Low Reynolds Number Hydrodynamics, Prentice-Hall, 1965, 553頁, 16×23cm, 6,780円. , 1969 .

[20]  Giuseppe Pontrelli,et al.  Non-similar flow of a non-Newtonian fluid past a wedge , 1993 .

[21]  R. Rivlin,et al.  Stress-Deformation Relations for Isotropic Materials , 1955 .

[22]  Mehrdad Massoudi,et al.  A Mixture Theory formulation for hydraulic or pneumatic transport of solid particles , 2010 .

[23]  Dae-Hyun Shin,et al.  Rheological behaviour of coal-water mixtures. 1. Effects of coal type, loading and particle size , 1995 .

[24]  Chi-Sing Man,et al.  Nonsteady channel flow of ice as a modified second-order fluid with power-law viscosity , 1992 .

[25]  G. Graham,et al.  Continuum mechanics and its applications , 1990 .

[26]  J. E. Dunn,et al.  Fluids of differential type: Critical review and thermodynamic analysis , 1995 .

[27]  Mehrdad Massoudi,et al.  On the flow of granular materials with variable material properties , 2001 .

[28]  R. Rivlin,et al.  The hydrodynamics of non-Newtonian fluids. I , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[30]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[31]  H. Barnes,et al.  An introduction to rheology , 1989 .

[32]  On the Significance of Normal Stress Effects in the Flow of Glaciers , 1987 .

[33]  J. Oldroyd On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[34]  M. Reiner,et al.  A Mathematical Theory of Dilatancy , 1945 .

[35]  Shozaburo Saito,et al.  PNEUMATIC CONVEYING OF SOLIDS THROUGH STRAIGHT PIPES , 1969 .

[36]  W. O. Criminale,et al.  Steady shear flow of non-Newtonian fluids , 1957 .

[37]  Mehrdad Massoudi,et al.  Effects of variable viscosity and viscous dissipation on the flow of a third grade fluid in a pipe , 1995 .

[38]  Khalid Aziz,et al.  The Flow Of Complex Mixtures In Pipes , 2021 .

[39]  A. Spencer Continuum Mechanics , 1967, Nature.

[40]  J. R. Abbott,et al.  A constitutive equation for concentrated suspensions that accounts for shear‐induced particle migration , 1992 .

[41]  An evaluation of the explicit finite-element method approach for modelling dense flows of discrete grains in a Couette shear cell , 2008 .

[42]  Dae-Hyun Shin,et al.  Rheological behaviour of coal-water mixtures. 2. Effect of surfactants and temperature , 1995 .

[43]  G. Papachristodoulou,et al.  Coal slurry fuel technology , 1987 .

[44]  R. L. Braun,et al.  Stress calculations for assemblies of inelastic speres in uniform shear , 1986 .

[45]  Mehrdad Massoudi,et al.  Flow of a generalized second grade fluid between heated plates , 1993 .

[46]  Mihail C. Roco,et al.  Slurry flow : principles and practice , 1991 .

[47]  S. Tsai,et al.  Viscometry and rheology of coal water slurry , 1986 .

[48]  H. Fernholz Boundary Layer Theory , 2001 .

[49]  John C. Slattery,et al.  Advanced transport phenomena , 1999 .

[50]  A.J.A. Morgan,et al.  Some properties of media defined by constitutive equations in implicit form , 1966 .

[51]  Mehrdad Massoudi,et al.  A note on the meaning of mixture viscosity using the classical continuum theories of mixtures , 2008 .

[52]  J. E. Dunn,et al.  Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade , 1974 .

[53]  J. Lumley,et al.  Mechanics of non-Newtonian fluids , 1978 .