A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications

Abstract Today’s power infrastructure involves unpredictability in both demand and supply. Power management using energy storage is becoming a promising method to have sustainable energy utilization. In recent times, energy storage using latent heat thermal energy storage (LHTES) technology is receiving more considerable attention to reducing grid energy demands. LHTES technology have been utilized by using phase change material (PCM)for the last two decades. This review focuses on the change in latent heat and thermal conductivity of nanoparticle dispersed phase change material (NDPCM) between the operating temperature range of 20 °C and 37 °C as required in low-temperature applications. The critical feature of this review is that it analyses both the scientific reasons behind the increase or decrease in latent heat and thermal conductivity of base PCM. Dispersion of nanoparticles as well as supporting materials into the PCM matrix and the impact of influencing parameters like size, shape and the material of the nanoparticles on the thermal properties of PCM. Dispersion of nanoparticle increases, the thermal conductivity gradually increases while the latent heat decreases. This indicates that the improvement in NDPCM thermal conductivity using nanoparticle will be accompanied by reduced latent heat in the NDPCM. However, Thermal conductivity enhancement in NDPCM was higher for carbon-based nanomaterial than for metal or metal oxide nanomaterial. Thus, the review will be helpful for new researchers in understanding the underlying science behind the change in critical thermal properties of the base PCM and to further improve the performance of the LHTES system.

[1]  Simon R. Phillpot,et al.  Effect of liquid layering at the liquid–solid interface on thermal transport , 2004 .

[2]  Tin-Tai Chow,et al.  Performance evaluation of district cooling plant with ice storage , 2006 .

[3]  Kefa Cen,et al.  Increased Thermal Conductivity of Eicosane-Based Composite Phase Change Materials in the Presence of Graphene Nanoplatelets , 2013 .

[4]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[5]  J. Khodadadi,et al.  Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials , 2012 .

[6]  G. Fang,et al.  Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage , 2018 .

[7]  Zia Ud Din,et al.  Phase change material (PCM) storage for free cooling of buildings—A review , 2013 .

[8]  J. Shiomi,et al.  Anomalous Thermal Conduction Characteristics of Phase Change Composites with Single-Walled Carbon Nanotube Inclusions , 2013 .

[9]  A. Sari,et al.  Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes , 2017 .

[10]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[11]  Eugénio Rodrigues,et al.  A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment , 2017 .

[12]  J. Th. G. Overbeek,et al.  Theory of the stability of lyophobic colloids , 1955 .

[13]  N. Putra,et al.  Characterization of the thermal stability of RT 22 HC/graphene using a thermal cycle method based on thermoelectric methods , 2017 .

[14]  N. Kim,et al.  Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement , 2014 .

[15]  A. Einstein Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.

[16]  J. H. Park,et al.  Effects of Brownian motion on freezing of PCM containing nanoparticles , 2016 .

[17]  Han Hu,et al.  Solidification of additive-enhanced phase change materials in spherical enclosures with convective cooling , 2017 .

[18]  Ang Li,et al.  Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting , 2018, Nano Energy.

[19]  C. Zhang,et al.  Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage , 2017 .

[20]  Seulgi Yu,et al.  Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity , 2014 .

[21]  Karthik Panchabikesan,et al.  Review on phase change material based free cooling of buildings—The way toward sustainability , 2015 .

[22]  Min Li A nano-graphite/paraffin phase change material with high thermal conductivity , 2013 .

[23]  Jungki Seo,et al.  High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system , 2012 .

[24]  S. Kalaiselvam,et al.  Energy conservative air conditioning system using silver nano-based PCM thermal storage for modern buildings , 2014 .

[25]  Yi-min Li,et al.  Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement , 2015 .

[26]  Zhengguo Zhang,et al.  Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material , 2013 .

[27]  Adriano Sciacovelli,et al.  Melting of PCM in a thermal energy storage unit: Numerical investigation and effect of nanoparticle enhancement , 2013 .

[28]  B. Derjaguin,et al.  Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes , 1993 .

[29]  Seong Jin Chang,et al.  Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets , 2015 .

[30]  D. Song,et al.  Research Progress of Phase Change Materials (PCMs) Embedded with Metal Foam (a Review) , 2014 .

[31]  Lixian Sun,et al.  Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage , 2014 .

[32]  J. Tyndall On Haze and Dust , 1870, Nature.

[33]  Lixian Sun,et al.  Synthesis of three-dimensional graphene aerogel encapsulated n-octadecane for enhancing phase-change behavior and thermal conductivity , 2017 .

[34]  Ashbindu Singh,et al.  Modeling increased demand of energy for air conditioners and consequent CO2 emissions to minimize health risks due to climate change in India , 2010 .

[35]  Haiting Wei,et al.  Preparation and characterization of a lauric-myristic-stearic acid/Al2O3-loaded expanded vermiculite composite phase change material with enhanced thermal conductivity , 2017 .

[36]  Mónica Delgado,et al.  Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications , 2012 .

[37]  J. Sanjayan,et al.  Heat Transfer Performance Enhancement of Paraffin/Expanded Perlite Phase Change Composites with Graphene Nano-platelets , 2017 .

[38]  Zhenjun Ma,et al.  Nano-enhanced phase change materials for improved building performance , 2016 .

[39]  M. Sheikholeslami Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles , 2018, Journal of Molecular Liquids.

[40]  T. L. Bergman,et al.  Heat pipe-assisted melting of a phase change material , 2012 .

[41]  Nesibe Gozde Ozerkan,et al.  Heat transfer performance of paraffin wax based phase change materials applicable in building industry , 2016 .

[42]  Ramazan Sarı,et al.  Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member , 2009 .

[43]  S. Kalaiselvam,et al.  Enhanced thermal performance and study the influence of sub cooling on activated carbon dispersed eutectic PCM for cold storage applications , 2017 .

[44]  K. Lafdi,et al.  Carbon nanoadditives to enhance latent energy storage of phase change materials , 2008 .

[45]  Tarlochan Kaur,et al.  Overview of Renewable Energy Resourcesof India , 2014 .

[46]  S. Harish,et al.  Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions , 2017 .

[47]  Ahmet Sarı,et al.  Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage , 2008 .

[48]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[49]  Seong Jin Chang,et al.  Thermal properties of shape-stabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings , 2015 .

[50]  Haitao Hu,et al.  Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling. Part II: Model development and validation , 2011 .

[51]  Sher Bahadar Khan,et al.  Structure and thermal properties of octadecane/expanded graphite composites as shape-stabilized phase change materials , 2016 .

[52]  Xiong Zhang,et al.  Utilization of lauric acid-myristic acid/expanded graphite phase change materials to improve thermal properties of cement mortar , 2016 .

[53]  Somkiat Boonnasa,et al.  The chilled water storage analysis for a university building cooling system , 2010 .

[54]  Anil Kumar Dubey,et al.  Renewable energy: An overview on its contribution in current energy scenario of India , 2016 .

[55]  Lixian Sun,et al.  Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials , 2012, Journal of Thermal Analysis and Calorimetry.

[56]  Hui Li,et al.  Synthesis and characteristics of form-stable n-octadecane/expanded graphite composite phase change materials , 2010 .

[57]  Junfeng Li,et al.  Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene , 2014 .

[58]  D. Banerjee,et al.  Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications , 2011 .

[59]  Y. Xuan,et al.  Aggregation structure and thermal conductivity of nanofluids , 2003 .

[60]  Bing Zhang,et al.  Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage , 2011 .

[61]  Jay M. Khodadadi,et al.  Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene , 2013 .

[62]  Pascal Henry Biwole,et al.  Heat transfer study of phase change materials with graphene nano particle for thermal energy storage , 2017 .

[63]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[64]  Na Li,et al.  Heat transfer enhancement of phase change composite material: Copper foam/paraffin , 2016 .

[65]  Arun S. Mujumdar,et al.  Numerical study on melting of paraffin wax with Al2O3 in a square enclosure , 2012 .

[66]  Yibing Cai,et al.  Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy , 2016 .

[67]  C. Martínez,et al.  Development of PCM/carbon-based composite materials , 2012 .

[68]  C. Veerakumar,et al.  Phase change material based cold thermal energy storage: Materials, techniques and applications – A review , 2016 .

[69]  Aie World Energy Outlook 2015 , 2015 .

[70]  Rahmatollah Khodabandeh,et al.  Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles , 2014 .

[71]  S. Kar,et al.  Thermal Modeling of Melting of Nano based Phase Change Material for Improvement of Thermal Energy Storage , 2017 .

[72]  Yilun Liu,et al.  Thermal Properties of the Mixed n-Octadecane/Cu Nanoparticle Nanofluids during Phase Transition: A Molecular Dynamics Study , 2017, Materials.

[73]  R. Zou,et al.  Tailoring thermal properties via synergistic effect in a multifunctional phase change composite based on methyl stearate , 2015 .

[74]  J. Khodadadi,et al.  Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage , 2017 .

[75]  Sumin Kim,et al.  Improvement of the thermal properties of Bio-based PCM using exfoliated graphite nanoplatelets , 2013 .

[76]  M. Sheikholeslami Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM , 2018 .

[77]  Liwu Fan,et al.  Thermal conductivity enhancement of phase change materials for thermal energy storage: A review , 2011 .

[78]  Yu-Qi Xiao,et al.  An experimental investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a bottom-heated vertical cylindrical cavity , 2013 .

[79]  G. Fang,et al.  Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials , 2014 .

[80]  Liwu Fan,et al.  Unconstrained melting heat transfer in a spherical container revisited in the presence of nano-enhanced phase change materials (NePCM) , 2016 .

[81]  Mohsen Sheikholeslami Kandelousi KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel , 2014 .

[82]  Dan Zhou,et al.  Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials , 2011 .

[83]  Yafei Zhang,et al.  Shape-stabilized phase change materials based on fatty acid eutectics/expanded graphite composites for thermal storage , 2015 .

[84]  R. K. Sharma,et al.  Developments in organic solid–liquid phase change materials and their applications in thermal energy storage , 2015 .

[85]  R. Jayavel,et al.  Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles , 2013, Journal of Thermal Analysis and Calorimetry.

[86]  D. Patil,et al.  Enhanced melting behavior of carbon based phase change nanocomposites in horizontally oriented latent heat thermal energy storage system , 2017 .

[87]  H. Ke Morphology and thermal performance of quaternary fatty acid eutectics/polyurethane/Ag form-stable phase change composite fibrous membranes , 2017, Journal of Thermal Analysis and Calorimetry.

[88]  Sughwan Kim,et al.  Thermal performance enhancement of mortar mixed with octadecane/xGnP SSPCM to save building energy consumption , 2014 .

[89]  Lucas W. Davis,et al.  Contribution of air conditioning adoption to future energy use under global warming , 2015, Proceedings of the National Academy of Sciences.

[90]  N. Koratkar,et al.  Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability , 2016 .

[91]  G. Balasubramanian,et al.  Effect of temperature and graphite particle fillers on thermal conductivity and viscosity of phase change material n-eicosane , 2017 .

[92]  Pradyumna Ghosh,et al.  Numerical Prediction of Heat Transfer Characteristics of Nanofluids in a Minichannel Flow , 2014 .

[93]  Jianlei Niu,et al.  Effective dispersion of multi-wall carbon nano-tubes in hexadecane through physiochemical modification and decrease of supercooling , 2012 .

[94]  D. Vuuren,et al.  Modeling global residential sector energy demand for heating and air conditioning in the context of climate change , 2009 .

[95]  L. Drzal,et al.  Thermal conductivity of exfoliated graphite nanoplatelet paper , 2011 .

[96]  D. Das,et al.  Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator , 2010 .

[97]  Xiaotang Hu,et al.  Improving the accuracy of the transient plane source method by correcting probe heat capacity and resistance influences , 2013 .

[98]  E. Michaelides Brownian movement and thermophoresis of nanoparticles in liquids , 2015 .

[99]  Seong Jin Chang,et al.  Evaluation of energy efficient hybrid hollow plaster panel using phase change material/xGnP composites , 2017 .

[100]  Liwu Fan,et al.  An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM) ☆ , 2012 .

[101]  Jay M. Khodadadi,et al.  Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review , 2013 .

[102]  A. Sari,et al.  Fatty Acid/Expanded Graphite Composites as Phase Change Material for Latent Heat Thermal Energy Storage , 2008 .

[103]  Bjørn Petter Jelle,et al.  Phase Change Materials and Products for Building Applications: A State-of-the-Art Review and Future Research Opportunities , 2015 .

[104]  Wenhua Yu,et al.  The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model , 2004 .

[105]  A. Mujumdar,et al.  THERMAL PERFORMANCE ENHANCEMENT OF PARAFFIN WAX WITH AL2O3 AND CuO NANOPARTICLES – A NUMERICAL STUDY , 2012 .

[106]  Zhonghao Rao,et al.  Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material , 2017 .

[107]  Pramod B. Salunkhe,et al.  A review on effect of phase change material encapsulation on the thermal performance of a system , 2012 .

[108]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[109]  K. Moon,et al.  Tunable thermal conduction character of graphite-nanosheets-enhanced composite phase change materials via cooling rate control , 2015 .

[110]  Q. Wei,et al.  Thermal energy storage and retrieval properties of form-stable phase change nanofibrous mats based on ternary fatty acid eutectics/polyacrylonitrile composite by magnetron sputtering of silver , 2016, Journal of Thermal Analysis and Calorimetry.

[111]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .

[112]  Yushi Liu,et al.  Graphene oxide modified hydrate salt hydrogels: form-stable phase change materials for smart thermal management , 2016 .

[113]  Yunfeng Lu,et al.  Synthesis of “graphene-like” mesoporous carbons for shape-stabilized phase change materials with high loading capacity and improved latent heat , 2017 .

[114]  R. Brown XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies , 1828 .

[115]  Ruzhu Wang,et al.  A review on phase change cold storage in air-conditioning system: Materials and applications , 2013 .

[116]  Takahiro Nomura,et al.  Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles , 2013 .

[117]  H. Metselaar,et al.  A review of nanofluid stability properties and characterization in stationary conditions , 2011 .

[118]  A. Elgafy,et al.  Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage using High Thermal Conductivity Porous Matrix , 2005 .

[119]  Parviz Soroushian,et al.  Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions , 2014 .

[120]  Tao Wang,et al.  Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-stabilized phase change material for thermal energy storage , 2015 .

[121]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[122]  M. Sheikholeslami Finite element method for PCM solidification in existence of CuO nanoparticles , 2018, Journal of Molecular Liquids.