Jackknifing K-L estimator in Poisson regression model

At the point when there is collinearity between the reaction variable and various illustrative factors, displaying the connection between the reaction variable and a few informative factors is troublesome. While surveying count information, the Poisson relapse model (PRM) is generally utilized in applied research. A shrinkage assessor is a consistently utilized answer for the multicollinearity issue. One of these shrinkage assessors is the Kibria and Lukman assessor (K-L). In this paper, a jackknifed variant of the K-L assessor in the Poisson relapse model is proposed, which consolidates the Jackknife interaction with the K-L assessor to diminish inclination. As far as outright inclination and mean squared blunder, our Monte Carlo recreation discoveries infer that the proposed assessor can give a critical improvement over other contending assessors.

[1]  Z. Algamal,et al.  Developing a Liu‐type estimator in beta regression model , 2021, Concurr. Comput. Pract. Exp..

[2]  Z. Algamal,et al.  A New Ridge-Type Estimator for the Gamma Regression Model , 2021, Scientifica.

[3]  Zakariya Yahya Algamal,et al.  Almost unbiased ridge estimator in the count data regression models , 2021 .

[4]  Zakariya Yahya Algamal,et al.  The KL estimator for the inverse Gaussian regression model , 2021, Concurr. Comput. Pract. Exp..

[5]  Z. Algamal,et al.  Generalized ridge estimator shrinkage estimation based on particle swarm optimization algorithm , 2020, IRAQI JOURNAL OF STATISTICAL SCIENCES.

[6]  M. Amin,et al.  Two-parameter estimator for the inverse Gaussian regression model , 2020, Commun. Stat. Simul. Comput..

[7]  Z. Algamal,et al.  Jackknifed Liu-type Estimator in Poisson Regression Model , 2020 .

[8]  A. Lukman,et al.  A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications , 2020, Scientifica.

[9]  Z. Algamal,et al.  Some almost unbiased ridge regression estimators for the zero-inflated negative binomial regression model , 2020 .

[10]  Z. Algamal,et al.  A new two-parameter estimator for the inverse Gaussian regression model with application in chemometrics , 2019 .

[11]  Z. Algamal,et al.  A New Ridge Estimator for the Poisson Regression Model , 2019, Iranian Journal of Science and Technology, Transactions A: Science.

[12]  Z. Algamal Performance of ridge estimator in inverse Gaussian regression model , 2019 .

[13]  Zakariya Yahya Algamal,et al.  Variable Selection in Count Data Regression Model based on Firefly Algorithm , 2019, Statistics, Optimization & Information Computing.

[14]  Z. Algamal A new method for choosing the biasing parameter in ridge estimator for generalized linear model , 2018, Chemometrics and Intelligent Laboratory Systems.

[15]  Zakariya Yahya Algamal,et al.  Liu-type estimator for the gamma regression model , 2018, Commun. Stat. Simul. Comput..

[16]  M. Revan Özkale,et al.  A first-order approximated jackknifed ridge estimator in binary logistic regression , 2018, Comput. Stat..

[17]  Zakariya Yahya Algamal,et al.  Shrinkage parameter selection via modified cross-validation approach for ridge regression model , 2018, Commun. Stat. Simul. Comput..

[18]  Z. Algamal,et al.  Proposed methods in estimating the ridge regression parameter in Poisson regression model , 2018 .

[19]  Selahattin Kaçiranlar,et al.  On the performance of the poisson and the negative binomial ridge predictors , 2018, Commun. Stat. Simul. Comput..

[20]  Z. Algamal Developing a ridge estimator for the gamma regression model , 2018, Journal of Chemometrics.

[21]  A. Genç,et al.  A New Two-Parameter Estimator for the Poisson Regression Model , 2018 .

[22]  N. Yıldız On the performance of the Jackknifed Liu-type estimator in linear regression model , 2018 .

[23]  Z. Algamal Shrinkage estimators for gamma regression model , 2018 .

[24]  M. Özkale,et al.  Liu estimation in generalized linear models: application on gamma distributed response variable , 2016 .

[25]  G. Özel,et al.  A new modified Jackknifed estimator for the Poisson regression model , 2016 .

[26]  B. M. Golam Kibria,et al.  A Simulation Study of Some Biasing Parameters for the Ridge Type Estimation of Poisson Regression , 2015, Commun. Stat. Simul. Comput..

[27]  Zakariya Yahya Algamal,et al.  Adjusted Adaptive LASSO in High-Dimensional Poisson Regression Model , 2015 .

[28]  Y. Chaubey,et al.  Jackknifing the Ridge Regression Estimator: A Revisit , 2014 .

[29]  B. M. Golam Kibria,et al.  Performance of Some Logistic Ridge Regression Estimators , 2012 .

[30]  Z. Algamal Diagnostic in Poisson Regression Models , 2012 .

[31]  Fikri Akdeniz,et al.  Efficiency of the modified jackknifed Liu-type estimator , 2012 .

[32]  K. Månsson On ridge estimators for the negative binomial regression model , 2012 .

[33]  Kristofer Månsson,et al.  A Poisson ridge regression estimator , 2011 .

[34]  B. M. Kibria,et al.  Performance of Some New Ridge Regression Estimators , 2003 .

[35]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[36]  H. Nyquist Restricted Estimation of Generalized Linear Models , 1991 .

[37]  H. Nyquist Applications of the jackknife procedure in ridge regression , 1988 .

[38]  D. Hinkley Jackknifing in Unbalanced Situations , 1977 .

[39]  Z. Algamal,et al.  Generalized ridge estimator in negative binomial regression model , 2021 .

[40]  Liu Kejian,et al.  A new class of blased estimate in linear regression , 1993 .

[41]  B. Segerstedt On ordinary ridge regression in generalized linear models , 1992 .

[42]  I Lomb,et al.  The efficiency of jack-knifed and usual ridge type estimators: A comparison , 1991 .

[43]  Martin L. Puterman,et al.  Collinearity in generalized linear models , 1989 .

[44]  A. E. Hoerl,et al.  Ridge regression:some simulations , 1975 .