Jackknifing K-L estimator in Poisson regression model
暂无分享,去创建一个
[1] Z. Algamal,et al. Developing a Liu‐type estimator in beta regression model , 2021, Concurr. Comput. Pract. Exp..
[2] Z. Algamal,et al. A New Ridge-Type Estimator for the Gamma Regression Model , 2021, Scientifica.
[3] Zakariya Yahya Algamal,et al. Almost unbiased ridge estimator in the count data regression models , 2021 .
[4] Zakariya Yahya Algamal,et al. The KL estimator for the inverse Gaussian regression model , 2021, Concurr. Comput. Pract. Exp..
[5] Z. Algamal,et al. Generalized ridge estimator shrinkage estimation based on particle swarm optimization algorithm , 2020, IRAQI JOURNAL OF STATISTICAL SCIENCES.
[6] M. Amin,et al. Two-parameter estimator for the inverse Gaussian regression model , 2020, Commun. Stat. Simul. Comput..
[7] Z. Algamal,et al. Jackknifed Liu-type Estimator in Poisson Regression Model , 2020 .
[8] A. Lukman,et al. A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications , 2020, Scientifica.
[9] Z. Algamal,et al. Some almost unbiased ridge regression estimators for the zero-inflated negative binomial regression model , 2020 .
[10] Z. Algamal,et al. A new two-parameter estimator for the inverse Gaussian regression model with application in chemometrics , 2019 .
[11] Z. Algamal,et al. A New Ridge Estimator for the Poisson Regression Model , 2019, Iranian Journal of Science and Technology, Transactions A: Science.
[12] Z. Algamal. Performance of ridge estimator in inverse Gaussian regression model , 2019 .
[13] Zakariya Yahya Algamal,et al. Variable Selection in Count Data Regression Model based on Firefly Algorithm , 2019, Statistics, Optimization & Information Computing.
[14] Z. Algamal. A new method for choosing the biasing parameter in ridge estimator for generalized linear model , 2018, Chemometrics and Intelligent Laboratory Systems.
[15] Zakariya Yahya Algamal,et al. Liu-type estimator for the gamma regression model , 2018, Commun. Stat. Simul. Comput..
[16] M. Revan Özkale,et al. A first-order approximated jackknifed ridge estimator in binary logistic regression , 2018, Comput. Stat..
[17] Zakariya Yahya Algamal,et al. Shrinkage parameter selection via modified cross-validation approach for ridge regression model , 2018, Commun. Stat. Simul. Comput..
[18] Z. Algamal,et al. Proposed methods in estimating the ridge regression parameter in Poisson regression model , 2018 .
[19] Selahattin Kaçiranlar,et al. On the performance of the poisson and the negative binomial ridge predictors , 2018, Commun. Stat. Simul. Comput..
[20] Z. Algamal. Developing a ridge estimator for the gamma regression model , 2018, Journal of Chemometrics.
[21] A. Genç,et al. A New Two-Parameter Estimator for the Poisson Regression Model , 2018 .
[22] N. Yıldız. On the performance of the Jackknifed Liu-type estimator in linear regression model , 2018 .
[23] Z. Algamal. Shrinkage estimators for gamma regression model , 2018 .
[24] M. Özkale,et al. Liu estimation in generalized linear models: application on gamma distributed response variable , 2016 .
[25] G. Özel,et al. A new modified Jackknifed estimator for the Poisson regression model , 2016 .
[26] B. M. Golam Kibria,et al. A Simulation Study of Some Biasing Parameters for the Ridge Type Estimation of Poisson Regression , 2015, Commun. Stat. Simul. Comput..
[27] Zakariya Yahya Algamal,et al. Adjusted Adaptive LASSO in High-Dimensional Poisson Regression Model , 2015 .
[28] Y. Chaubey,et al. Jackknifing the Ridge Regression Estimator: A Revisit , 2014 .
[29] B. M. Golam Kibria,et al. Performance of Some Logistic Ridge Regression Estimators , 2012 .
[30] Z. Algamal. Diagnostic in Poisson Regression Models , 2012 .
[31] Fikri Akdeniz,et al. Efficiency of the modified jackknifed Liu-type estimator , 2012 .
[32] K. Månsson. On ridge estimators for the negative binomial regression model , 2012 .
[33] Kristofer Månsson,et al. A Poisson ridge regression estimator , 2011 .
[34] B. M. Kibria,et al. Performance of Some New Ridge Regression Estimators , 2003 .
[35] Arthur E. Hoerl,et al. Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.
[36] H. Nyquist. Restricted Estimation of Generalized Linear Models , 1991 .
[37] H. Nyquist. Applications of the jackknife procedure in ridge regression , 1988 .
[38] D. Hinkley. Jackknifing in Unbalanced Situations , 1977 .
[39] Z. Algamal,et al. Generalized ridge estimator in negative binomial regression model , 2021 .
[40] Liu Kejian,et al. A new class of blased estimate in linear regression , 1993 .
[41] B. Segerstedt. On ordinary ridge regression in generalized linear models , 1992 .
[42] I Lomb,et al. The efficiency of jack-knifed and usual ridge type estimators: A comparison , 1991 .
[43] Martin L. Puterman,et al. Collinearity in generalized linear models , 1989 .
[44] A. E. Hoerl,et al. Ridge regression:some simulations , 1975 .