White-Lighting Communication With a Lu3Al5O12:Ce3+/CaAlSiN 3:Eu2+ Glass Covered 450-nm InGaN Laser Diode

By using the Lu<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>:Ce<sup>3+</sup>/CaAlSiN<sub>3</sub>:Eu<sup>2+</sup> phosphor codoped fluorescent glass as a phosphor in front of an InGaN laser diode (LD), a novel white-lighting and visible light communication (VLC) module is demonstrated. By enlarging the fluorescent glass thickness from 0.7 to 1 mm, the CCT of the generated white light is increased from 7373 to 25000 K, and the maximal illuminance is enlarged from 1306 to 1356 lux. The pure LD-beam-based VLC can lengthen its transmission distance from 0.5 to 16 m, associated with allowable data rate slightly decreased from 14.8 to 10.8 Gb/s. When using the divergent white light as a carrier for VLC transmission, the allowable data rate upgrades from 1.6 to 4.4 Gb/s within 0.5-m distance in free space by thinning the fluorescent glass from 1 to 0.7 mm. Lengthening the white-lighting distance to 1 m for the VLC system still permits 16-QAM OFDM data transmission as high as 2.8 Gb/s. Such a Lu<sub> 3</sub>Al<sub>5</sub>O<sub>12</sub>:Ce<sup>3+</sup>/CaAlSiN<sub>3</sub>:Eu<sup>2+</sup> phosphor codoped fluorescent glass not only converts the blue LD beam for white lighting efficiently, but also preserves sufficient data capacity with acceptable signal-to-noise ratio for indoor VLC application.

[1]  H. Haas,et al.  A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride $\mu{\rm LED}$ , 2014, IEEE Photonics Technology Letters.

[2]  Harald Haas,et al.  Indoor optical wireless communication: potential and state-of-the-art , 2011, IEEE Communications Magazine.

[3]  Wang Yuanquan,et al.  A high-speed bi-directional visible light communication system based on RGB-LED , 2014, China Communications.

[4]  D. O'Brien,et al.  A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications , 2013, IEEE Photonics Technology Letters.

[5]  Harald Haas,et al.  Performance Comparison of MIMO Techniques for Optical Wireless Communications in Indoor Environments , 2013, IEEE Transactions on Communications.

[6]  K. Langer,et al.  513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED , 2010, Journal of Lightwave Technology.

[7]  Y. Liu,et al.  Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference. , 2012, Optics express.

[8]  Horst Zimmermann,et al.  Optical Wireless APD Receiver With High Background-Light Immunity for Increased Communication Distances , 2016, IEEE Journal of Solid-State Circuits.

[9]  D. O’brien,et al.  100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED , 2009, IEEE Photonics Technology Letters.

[10]  Sujan Rajbhandari,et al.  Novel fast color-converter for visible light communication using a blend of conjugated polymers , 2015 .

[11]  G Cossu,et al.  3.4 Gbit/s visible optical wireless transmission based on RGB LED. , 2012, Optics express.

[12]  Harald Haas,et al.  Indoor broadcasting via white LEDs and OFDM , 2009, IEEE Transactions on Consumer Electronics.

[13]  H. Haas,et al.  On the Performance of Different OFDM Based Optical Wireless Communication Systems , 2011, IEEE/OSA Journal of Optical Communications and Networking.

[14]  Horst Zimmermann,et al.  PIN Photodiode Optoelectronic Integrated Receiver Used for 3-Gb/s Free-Space Optical Communication , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Masao Nakagawa,et al.  Integrated system of white LED visible-light communication and power-line communication , 2003, IEEE Trans. Consumer Electron..

[16]  Guo-yong Hu,et al.  Free-Space Optical communication using visible light , 2007 .

[17]  Hao-Chung Kuo,et al.  Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication , 2015, Scientific Reports.

[18]  H. Haas,et al.  Visible Light Communication Using a Blue GaN $\mu $ LED and Fluorescent Polymer Color Converter , 2014, IEEE Photonics Technology Letters.

[19]  Xiaofei Wang,et al.  A hybrid power line and visible light communication system for indoor hospital applications , 2015, Comput. Ind..

[20]  Arthur J. Lowery Design of Arrayed-Waveguide Grating Routers for use as optical OFDM demultiplexers. , 2010, Optics express.

[21]  Chien-Hung Yeh,et al.  Digital Signal Processing for Light Emitting Diode Based Visible Light Communication , 2012 .

[22]  Hao-Chung Kuo,et al.  450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM. , 2015, Optics express.

[23]  S. Denbaars,et al.  High-Modulation-Efficiency, Integrated Waveguide Modulator–Laser Diode at 448 nm , 2016 .

[24]  Masao Nakagawa,et al.  Indoor Visible Light Data Transmission System Utilizing White LED Lights , 2003 .

[25]  Gong-Ru Lin,et al.  Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s , 2017, Scientific Reports.

[26]  John R. Barry,et al.  Indoor Channel Characteristics for Visible Light Communications , 2011, IEEE Commun. Lett..

[27]  Jianjun Yu,et al.  Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. , 2013, Optics express.

[28]  Yang Liu,et al.  Orthogonal frequency-division multiplexing access (OFDMA) based wireless visible light communication (VLC) system , 2015 .

[29]  Masao Nakagawa,et al.  Visible light communication with LED-based traffic lights using 2-dimensional image sensor , 2006, CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking Conference, 2006..

[30]  Sridhar Rajagopal,et al.  IEEE 802.15.7 visible light communication: modulation schemes and dimming support , 2012, IEEE Communications Magazine.

[31]  Lutz H.-J. Lampe,et al.  Visible Light Communications Using OFDM and Multiple LEDs , 2015, IEEE Transactions on Communications.

[32]  Wood-Hi Cheng,et al.  Chromaticity tailorable glass-based phosphor-converted white light-emitting diodes with high color rendering index. , 2015, Optics express.

[33]  Mohamed-Slim Alouini,et al.  4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode. , 2015, Optics express.

[34]  S. Randel,et al.  Broadband Information Broadcasting Using LED-Based Interior Lighting , 2008, Journal of Lightwave Technology.

[35]  Masao Nakagawa,et al.  Fundamental analysis for visible-light communication system using LED lights , 2004, IEEE Transactions on Consumer Electronics.

[36]  Hsi-Chao Chen,et al.  Illumination distribution and signal transmission for indoor visible light communication with different light-emitting diode arrays and pre-equality circuits , 2015 .

[37]  Grantham Pang,et al.  Visible light communication for audio systems , 1999, IEEE Trans. Consumer Electron..

[38]  Shuji Nakamura,et al.  2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system. , 2015, Optics express.

[39]  H. Zimmermann,et al.  Real-Time 1.25-Gb/s Transmission Over 50-m SI-POF Using a Green Laser Diode , 2012, IEEE Photonics Technology Letters.

[40]  Horst Zimmermann,et al.  OWC using a monolithically integrated 200 µm APD OEIC in 0.35 µm BiCMOS technology. , 2016, Optics express.