Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and Polarimetric Variables

Abstract A radar simulator for polarimetric radar variables, including reflectivities at horizontal and vertical polarizations, the differential reflectivity, and the specific differential phase, has been developed. This simulator serves as a test bed for developing and testing forward observation operators of polarimetric radar variables that are needed when directly assimilating these variables into storm-scale numerical weather prediction (NWP) models, using either variational or ensemble-based assimilation methods. The simulator takes as input the results of high-resolution NWP model simulations with ice microphysics and produces simulated polarimetric radar data that may also contain simulated errors. It is developed based on calculations of electromagnetic wave propagation and scattering at the S band of wavelength 10.7 cm in a hydrometeor-containing atmosphere. The T-matrix method is used for the scattering calculation of raindrops and the Rayleigh scattering approximation is applied to snow and ha...

[1]  Jidong Gao,et al.  The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation , 2003 .

[2]  C. Velden,et al.  Mesoscale Numerical Weather Prediction Models Used in Support of Infrared Hyperspectral Measurement Simulation and Product Algorithm Development , 2007 .

[3]  W. Tao,et al.  Modeling Study of a Tropical Squall-Type Convective Line , 1989 .

[4]  Ming Hu,et al.  3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part II: Impact of Radial Velocity Analysis via 3DVAR , 2006 .

[5]  H. D. Orville,et al.  Radar Reflectivity Factor Calculations in Numerical Cloud Models Using Bulk Parameterization of Precipitation , 1975 .

[6]  Ryan M. May,et al.  A Doppler Radar Emulator with an Application to the Detectability of Tornadic Signatures , 2007 .

[7]  S. Rutledge,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder” Process in Warm-Frontal Rainbands , 1983 .

[8]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[9]  Guifu Zhang,et al.  Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment , 2002 .

[10]  Mingjing Tong,et al.  An OSSE Framework Based on the Ensemble Square Root Kalman Filter for Evaluating the Impact of Data from Radar Networks on Thunderstorm Analysis and Forecasting , 2006 .

[11]  Jothiram Vivekanandan,et al.  Polarimetric radar modeling of mixtures of precipitation particles , 1993, IEEE Trans. Geosci. Remote. Sens..

[12]  Erik N. Rasmussen,et al.  Precipitation and Evolution Sensitivity in Simulated Deep Convective Storms: Comparisons between Liquid-Only and Simple Ice and Liquid Phase Microphysics* , 2004 .

[13]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar , 2001 .

[14]  Alexander V. Ryzhkov,et al.  Rainfall Estimation with a Polarimetric Prototype of WSR-88D , 2005 .

[15]  David T. Bolvin,et al.  Tropical Rainfall Distributions Determined Using TRMM Combined with Other Satellite and Rain Gauge Information , 2000 .

[16]  K. Aydin,et al.  A computational study of polarimetric radar observables in hail , 1990, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Song‐You Hong,et al.  The WRF Single-Moment 6-Class Microphysics Scheme (WSM6) , 2006 .

[18]  B. Ferrier,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description , 1994 .

[19]  Arlen W. Huggins,et al.  The Direct Measurement of the Sizes, Shapes and Kinematics of Falling Hailstones , 1980 .

[20]  Nancy C. Knight,et al.  Hailstone Shape Factor and Its Relation to Radar Interpretation of Hail , 1986 .

[21]  Density currents in shear flows: Effects of rigid lid and cold‐pool internal circulation, and application to squall line dynamics , 2002 .

[22]  Jothiram Vivekanandan,et al.  Multiparameter Radar Measurements in Colorado Convective Storms. Part II: Hail Detection Studies , 1986 .

[23]  Jerry M. Straka,et al.  Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations , 2000 .

[24]  K. Droegemeier,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification , 2000 .

[25]  M. Xue,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications , 2001 .

[26]  M. Xue,et al.  3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part I: Cloud Analysis and Its Impact , 2006 .

[27]  A. W. Green,et al.  An Approximation for the Shapes of Large Raindrops , 1975 .

[28]  Lawrence D. Carey,et al.  CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado , 1998 .

[29]  Robert B. Wilhelmson,et al.  The Morphology of Several Tornadic Storms on 20 May 1977 , 1981 .

[30]  R. Deal,et al.  Mechanisms of Cell Regeneration, Development, and Propagation within a Two-Dimensional Multicell Storm , 1998 .

[31]  C. Kessinger,et al.  A Study of Thunderstorm Microphysics with Multiparameter Radar and Aircraft Observations , 1995 .

[32]  Alexander V. Ryzhkov,et al.  Polarimetric method for ice water content determination , 1996 .

[33]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar: Principles and Applications , 2001 .

[34]  Mingjing Tong,et al.  Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Radar Data and Ensemble Square-root Kalman Filter . Part I : Sensitivity Analysis and Parameter , 2007 .

[35]  R. Fovell,et al.  The Temporal Behavior of Numerically Simulated Multicell-Type Storms. Part II: The Convective Cell Life Cycle and Cell Regeneration , 1998 .

[36]  Guifu Zhang,et al.  Comparison of Polarimetric Radar Drop Size Distribution Retrieval Algorithms , 2004 .

[37]  V. N. Bringi,et al.  Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation , 1976 .

[38]  G. Mccormick,et al.  Radar observations of the alignment of precipitation particles by electrostatic fields in thunderstorms , 1976 .

[39]  Jerry M. Straka,et al.  Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part II: Impact of Polarimetric Data on Storm Analysis , 2008 .

[40]  V. Chandrasekar,et al.  Multiparameter Radar Observations of Time Evolution of Convective Storms: Evaluation of Water Budgets and Latent Heating Rates , 1998 .

[41]  A. Illingworth,et al.  Polarization radar studies of precipitation development in convective storms , 1987 .

[42]  A. Ryzhkov,et al.  Polarimetry for Weather Surveillance Radars , 1999 .

[43]  R. Rotunno,et al.  A Theory for Strong, Long-Lived Squall Lines , 1988 .

[44]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[45]  Véronique Ducrocq,et al.  A Radar Simulator for High-Resolution Nonhydrostatic Models , 2006 .

[46]  Gerald M. Heymsfield,et al.  Statistical Objective Analysis of Dual-Doppler Radar Data from a Tornadic Storm , 1976 .

[47]  Mingjing Tong,et al.  Ensemble kalman filter assimilation of doppler radar data with a compressible nonhydrostatic model : OSS experiments , 2005 .

[48]  Joseph B. Klemp,et al.  The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy , 1982 .

[49]  Mingjing Tong,et al.  Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part I: Sensitivity Analysis and Parameter Identifiability , 2008 .

[50]  Guifu Zhang,et al.  Drop Size Distribution Retrieval with Polarimetric Radar: Model and Application , 2004 .

[51]  Susanne Crewell,et al.  Simulation of radar reflectivities using a mesoscale weather forecast model , 2000 .

[52]  Alexander V. Ryzhkov,et al.  Polarimetric Radar Observations and Interpretation of Co-Cross-Polar Correlation Coefficients , 2002 .

[53]  Paul L. Smith Equivalent Radar Reflectivity Factors for Snow and Ice Particles , 1984 .

[54]  Mitchell W. Moncrieff,et al.  Two‐dimensional convection in non‐constant shear: A model of mid‐latitude squall lines , 1982 .

[55]  Guifu Zhang,et al.  A method for estimating rain rate and drop size distribution from polarimetric radar measurements , 2001, IEEE Trans. Geosci. Remote. Sens..

[56]  D. Zrnic,et al.  Doppler Radar and Weather Observations , 1984 .

[57]  Mingjing Tong Simultaneous Retrieval of Microphysical Parameters and Atmospheric State Variables with Radar Data and Ensemble Kalman Filter Method , 2005 .

[58]  Julius Goldhirsh,et al.  Comparison of Simulated Rain Rates from Disdrometer Data Employing Polarimetric Radar Algorithms , 1989 .

[59]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[60]  V. Chandrasekar,et al.  Error Structure of Multiparameter Radar and Surface Measurements of Rainfall. Part III : Specific Differential Phase , 1990 .

[61]  Youngsun Jung Assimilation of polarimetric radar data using ensemble Kalman filter:Experiments with simulated data , 2005 .

[62]  Martin Hagen,et al.  Polarimetric radar studies of atmospheric ice particles , 1994, IEEE Trans. Geosci. Remote. Sens..

[63]  V. N. Bringi,et al.  Dual-Polarization observations of Microbursts Associated with Intense Convection: The 20 July Storm during the MIST Project , 1988 .