Wind-structure interaction simulations of ovalling vibrations in silo groups

Abstract During a storm in October 2002, wind-induced ovalling vibrations were observed on several empty silos of a closely spaced group of silos in the port of Antwerp (Belgium). In this paper, three-dimensional numerical simulations are used to investigate this complex case of wind-structure interaction. The computed amplitude of the ovalling vibrations of the silos is similar to that in the observations, indicating that the adopted modelling approach can be suitable for the analysis of new silo groups. Both one-way and two-way simulations are presented, for a single silo and for the silo group. In the one-way simulations, the wind pressure is applied on the structure, disregarding the structural displacements in the wind flow simulation. By contrast, the two-way simulations also take into account the effect of the structural motion on the wind flow. For a single silo, the one-way and two-way simulations yield similar results. Conversely, for a silo in the group, the ovalling vibrations are significantly larger in the two-way simulations than in the one-way simulations. Consequently, aeroelastic effects and/or interactions between the wake-induced excitation and the vibration are present in the silo group for the investigated case. Furthermore, it is shown that the aerodynamic loading and vibration amplitudes are considerably larger for silos in the group than for a single isolated silo.

[1]  Florian R. Menter,et al.  The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description , 2010 .

[2]  Jan Carmeliet,et al.  The influence of the wind-blocking effect by a building on its wind-driven rain exposure , 2006 .

[3]  A. Jensen,et al.  Unsteady Reynolds averaged Navier–Stokes simulations of a buoyant plume above a cylinder , 2015 .

[4]  Tayeb Zeguer,et al.  A New Fluid Structure Coupling Method for Airbag OOP , 2006 .

[5]  Kai-Uwe Bletzinger,et al.  Bridge flutter derivatives based on computed, validated pressure fields , 2012 .

[6]  Olivier Bernard,et al.  Fluid structure interaction between rods and a cross flow – Numerical approach , 2011 .

[7]  Bje Bert Blocken,et al.  3D CFD simulations of wind flow and wind-driven rain shelter in sports stadia: Influence of stadium geometry , 2011 .

[8]  Andrew Quinn,et al.  Modelling the dispersion of aerial pollutants from agricultural buildings — an evaluation of computational fluid dynamics (CFD) , 2001 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[11]  K. H. Haslinger,et al.  Numerical Simulation of Cross-Flow-Induced Fluidelastic Vibration of Tube Arrays and Comparison With Experimental Results , 1995 .

[12]  Ender A. Finol,et al.  Compliant biomechanics of abdominal aortic aneurysms: A fluid-structure interaction study , 2007 .

[13]  K. Bathe,et al.  Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction , 2009 .

[14]  S. Katsura Wind-excited ovalling vibration of a thin circular cylindrical shell , 1985 .

[15]  Ying-Hwa Kuo Mesoscale Numerical Weather Prediction , 2003 .

[16]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[17]  Fumio Inada,et al.  Flow Induced Vibrations : Classifications and Lessons from Practical Experiences , 2008 .

[18]  Jean-Pierre Bertoglio,et al.  Assessment of the vortex method for Large Eddy Simulation inlet conditions , 2006 .

[19]  Tayeb Zeguer,et al.  Multiphysics out of position airbag simulation , 2008 .

[20]  Andrea Collina,et al.  Wind tunnel tests on different erection stages of a cable stayed bridge , 2011 .

[21]  K. Bathe,et al.  Finite element developments for general fluid flows with structural interactions , 2004 .

[22]  David W Keith,et al.  The influence of large-scale wind power on global climate. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  G. N. Malcolm,et al.  Study of Viscous Crossflow Effects on Circular Cylinders at High Reynolds Numbers , 1980 .

[24]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[25]  Charles H. K. Williamson,et al.  Resonance forever: existence of a critical mass and an infinite regime of resonance in vortex-induced vibration , 2002, Journal of Fluid Mechanics.

[26]  Roland Wüchner,et al.  Algorithmic treatment of shells and free form-membranes in FSI , 2006 .

[27]  Yang Zhao,et al.  Buckling design of large circular steel silos subject to wind pressure , 2013 .

[28]  Jan Vierendeels,et al.  Simulation of fluid–structure interaction with the interface artificial compressibility method , 2010 .

[29]  M. P. Païdoussis,et al.  On ovalling oscillations of cylindrical shells in cross-flow , 1979 .

[30]  Stuart J. Price,et al.  Flow-pattern identification for two staggered circular cylinders in cross-flow , 2000, Journal of Fluid Mechanics.

[31]  Niels N. Sørensen,et al.  General purpose flow solver applied to flow over hills , 1995 .

[32]  P. Verdonck,et al.  Computer simulation of intraventricular flow and pressure gradients during diastole. , 2000, Journal of biomechanical engineering.

[33]  P. Mason Atmospheric boundary layer flows: Their structure and measurement , 1995 .

[34]  Sumedha,et al.  SHORT COMMUNICATION , 2007 .

[35]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[36]  Pascal Frey,et al.  Fluid-structure interaction in blood flows on geometries based on medical imaging , 2005 .

[37]  R. Kraichnan Diffusion by a Random Velocity Field , 1970 .

[38]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[39]  C. X. Zhang,et al.  Numerical predictions of turbulent recirculating flows with a κ-ϵ model , 1994 .

[40]  Charbel Farhat,et al.  Matching fluid and structure meshes for aeroelastic computations : a parallel approach , 1995 .

[41]  Rainald Löhner,et al.  Improved ALE mesh velocities for moving bodies , 1996 .

[42]  Masaru Hoshiya,et al.  SIMULATION OF MULTI-CORRELATED RANDOM PROCESSES AND APPLICATION TO STRUCTURAL VIBRATION PROBLEMS , 1972 .

[43]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[44]  Joris Degroote,et al.  Partitioned Simulation of Fluid-Structure Interaction , 2013 .

[45]  A G Davenport,et al.  THE RESPONSE OF SLENDER, LINE-LIKE STRUCTURES TO A GUSTY WIND. , 1962 .

[46]  Charbel Farhat,et al.  On the accuracy, stability, and performance of the solution of three-dimensional nonlinear transient aeroelastic problems by partitioned procedures , 1996 .

[47]  Hans A. Panofsky,et al.  Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880–1972☆ , 1976 .

[48]  T. Theodorsen General Theory of Aerodynamic Instability and the Mechanism of Flutter , 1934 .

[49]  Jan Vierendeels,et al.  Stability of a coupling technique for partitioned solvers in FSI applications , 2008 .

[50]  D. Wilcox Reassessment of the scale-determining equation for advanced turbulence models , 1988 .

[51]  Rui Liu,et al.  The role of turbulence length scale and turbulence intensity on forced convection from a heated horizontal circular cylinder , 2007 .

[52]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[53]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[54]  T. Stathopoulos,et al.  CFD simulation of the atmospheric boundary layer: wall function problems , 2007 .

[55]  Shuzo Murakami,et al.  Generation of velocity fluctuations for inflow boundary condition of LES , 1997 .

[56]  E. D. Langre Effects of Wind on Plants , 2008 .

[57]  J. R. Wu,et al.  A general inflow turbulence generator for large eddy simulation , 2010 .

[58]  Joel H. Ferziger,et al.  A fluid mechanicians view of wind engineering: Large eddy simulation of flow past a cubic obstacle , 1997 .

[59]  K. Lilly On the application of the eddy viscosity concept in the Inertial sub-range of turbulence , 1966 .

[60]  I. V. D. Hoven POWER SPECTRUM OF HORIZONTAL WIND SPEED IN THE FREQUENCY RANGE FROM 0.0007 TO 900 CYCLES PER HOUR , 1957 .

[61]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[62]  Gregory J. Hakim,et al.  The Planetary Boundary Layer , 2013 .

[63]  Alistair Revell,et al.  DESider A European Effort on Hybrid RANS-LES Modelling: Results of the European-Union Funded Project, 2004 - 2007 , 2009 .

[64]  J. Schetz Boundary Layer Analysis , 1992 .

[65]  Tayfun E. Tezduyar,et al.  Space-time FSI modeling and dynamical analysis of ringsail parachute clusters , 2011 .

[66]  Mahmoud Ismail,et al.  A computational method coupling 3D and reduce-D models based on Neumann boundary conditions for biomechanical problems , 2012 .

[67]  Charbel Farhat,et al.  Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity , 2006 .

[68]  Roland Wüchner,et al.  A framework for stabilized partitioned analysis of thin membrane–wind interaction , 2007 .

[69]  M. P. Païdoussis,et al.  Ovalling oscillations of cylindrical shells in cross-flow: A review and some new results , 1988 .

[70]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[71]  Tomasz Mikulski,et al.  Effect of geometric imperfections on aluminium silo capacities , 2015 .

[72]  Parviz Moin,et al.  Large-Eddy Simulation Inflow Conditions for Coupling with Reynolds-Averaged Flow Solvers , 2004 .

[73]  A. Laneville,et al.  Ovalling Oscillations of Cantilevered Cylindrical Shells in Cross-Flow: New Experimental Data , 1995 .

[74]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[75]  Julio Romano Meneghini,et al.  Numerical Simulations of Vortex-Induced Vibration of Flexible Cylinders , 2002 .

[76]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[77]  Eberhard Haug,et al.  Validation of the computational fluid–structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow , 2011 .

[78]  Bje Bert Blocken,et al.  CFD simulation of cross-ventilation for a generic isolated building : impact of computational parameters , 2012 .

[79]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[80]  Bje Bert Blocken,et al.  Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard , 2009 .

[81]  Hiromichi Shirato,et al.  Effects of aerodynamic interferences between heaving and torsional vibration of bridge decks: the case of Tacoma Narrows Bridge , 2003 .

[82]  Ian P. Castro,et al.  Flow around a cube in a turbulent boundary layer: LES and experiment , 2009 .

[83]  Hugh Maurice Blackburn,et al.  Lock-in behavior in simulated vortex-induced vibration , 1996 .

[84]  Michael P. Païdoussis,et al.  Ovalling of chimneys: Induced by vortex shedding or self-excited? , 1983 .

[85]  板橋 清巳 Resonance , 1962 .

[86]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[87]  Kenji Takizawa,et al.  Comparative patient-specific fsi modeling of cerebral aneurysms , 2011 .

[88]  Hester Bijl,et al.  Review of coupling methods for non-matching meshes , 2007 .

[89]  Jan Vierendeels,et al.  Implicit coupling of partitioned fluid-structure interaction problems with reduced order models , 2007 .

[90]  T. Lund,et al.  Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations , 1998 .

[91]  A. Roshko,et al.  Experiments on flow past rough circular cylinders at large Reynolds numbers , 1993 .

[92]  Yang Zhao,et al.  Wind loads on large cylindrical open-topped tanks in group , 2014 .

[93]  Luis A. Godoy,et al.  Wind buckling of metal tanks during their construction , 2010 .

[94]  I. Celik,et al.  Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling , 2001 .

[95]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[96]  Charles S. Peskin,et al.  Modeling prosthetic heart valves for numerical analysis of blood flow in the heart , 1980 .

[97]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[98]  R. Scanlan,et al.  Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks , 1991 .

[99]  Cheol Woo Park,et al.  Free end effects on the near wake flow structure behind a finite circular cylinder , 2000 .

[100]  P. Spalart,et al.  A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities , 2008 .

[101]  A. Obukhov,et al.  Turbulence in an atmosphere with a non-uniform temperature , 1971 .

[102]  Michael Schatzmann,et al.  Quality assurance and improvement of micro-scale meteorological models , 2011 .

[103]  F. Sotiropoulos,et al.  Computational study and modeling of turbine spacing effects in infinite aligned wind farms , 2012 .

[104]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[105]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[106]  C. Williamson,et al.  Vortex-Induced Vibrations , 2004, Wind Effects on Structures.

[107]  Jan Vierendeels,et al.  Stability analysis of Gauss-Seidel iterations in a partitioned simulation of fluid-structure interaction , 2010 .

[108]  Michael P. Païdoussis,et al.  Flutter of thin cylindrical shells in cross flow , 1982, Journal of Fluid Mechanics.

[109]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[110]  Yoon-Suk Chang,et al.  Numerical simulation of flow-induced bi-directional oscillations , 2013 .

[111]  Christian Soize,et al.  Structural Acoustics and Vibration , 2001 .

[112]  David S. Weaver,et al.  Vortex Shedding in Normal Triangular Tube Arrays , 1995 .

[113]  Charles H. K. Williamson,et al.  Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder , 1997 .

[114]  M. Lai,et al.  An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity , 2000 .

[115]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[116]  S. Mittal,et al.  Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries , 1995 .

[117]  P. Spalart,et al.  A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities , 2006 .

[118]  Yoshihide Tominaga,et al.  AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings , 2008 .

[119]  Charalampos C. Baniotopoulos Wind Loading of StructuresJohn D. Holmes, 3rd edition., CRC Press, Taylor & Francis Group, Boca Raton FL, New York NY, Oxon UK, 2015, ISBN 978-1-4822-2919-6, (Hardback) pp. 328 pp. , 2015 .

[120]  Ekkehard Ramm,et al.  Large deformation fluid structure interaction - advances in ALE methods and new fixed grid approaches , 2006 .

[121]  C. W. Hirt An arbitrary Lagrangian-Eulerian computing technique , 1971 .

[122]  Dag Myrhaug,et al.  Numerical simulation of flow around a smooth circular cylinder at very high Reynolds numbers , 2009 .

[123]  D. Wilcox Simulation of Transition with a Two-Equation Turbulence Model , 1994 .

[124]  M. P. Païdoussis,et al.  Ovalling oscillations of cantilevered and clamped-clamped cylindrical shells in cross flow: An experimental study , 1982 .

[125]  Hiroshi Sakamoto,et al.  Determination of flow configurations and fluid forces acting on two staggered circular cylinders of equal diameter in cross-flow , 2005 .

[126]  Stephane Etienne,et al.  Numerical Simulations of Vortex-Induced Vibrations of Slender Flexible Offshore Structures , 2001 .

[127]  Philippe R. Spalart,et al.  Detached-Eddy Simulations Past a Circular Cylinder , 2000 .

[128]  T ByJ.C.R.HUN,et al.  The disappearance of laminar and turbulent wakes in complex flows , 2012 .

[129]  S. T. Jenq,et al.  Hydroplaning Analysis for Tire Rolling over Water Film with Various Thicknesses Using the LS-DYNA Fluid-Structure Interactive Scheme , 2009 .

[130]  Roland Wüchner,et al.  Towards FSI for light-weight structures subjected to wind , 2005 .

[131]  S. Pacala,et al.  Can large wind farms affect local meteorology , 2003 .

[132]  Kamal Poddar,et al.  Experiments on integral length scale control in atmospheric boundary layer wind tunnel , 2011 .

[133]  Hamn-Ching Chen,et al.  Time-Domain Simulation of Riser VIV in Sheared Current , 2007 .

[134]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[135]  Thomas Hahm,et al.  3D-simulation of the turbulent wake behind a wind turbine , 2007 .

[136]  J. Peraire,et al.  AIAA 99 – 1467 LOW ORDER AERODYNAMIC MODELS FOR AEROELASTIC CONTROL OF TURBOMACHINES , 1999 .

[137]  P. Spalart Strategies for turbulence modelling and simulations , 2000 .

[138]  Alan G. Davenport,et al.  Rationale for Determining Design Wind Velocities , 1960 .

[139]  Niels N. Sørensen CFD modelling of laminar‐turbulent transition for airfoils and rotors using the γ − model , 2009 .

[140]  Jan Vierendeels,et al.  A partitioned strongly coupled fluid-structure interaction method to model heart valve dynamics , 2008 .

[141]  M. P. Païdoussis,et al.  The flow-induced vibration of a single flexible cylinder in a rotated square array of rigid cylinders with pitch-to-diameter ratio of 2·12 , 1987 .

[142]  Tayfun E. Tezduyar,et al.  Computer Modeling and Analysis of the Orion Spacecraft Parachutes , 2011 .

[143]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[144]  Yousef Saad,et al.  Nonlinear Krylov acceleration for CFD-based aeroelasticity , 2009 .

[145]  Bert Blocken,et al.  Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam ArenA stadium , 2010, Environ. Model. Softw..

[146]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[147]  Bassam A. Younis,et al.  Computation of turbulent vortex shedding , 2006 .

[148]  Alan G. Davenport,et al.  Gust Loading Factors , 1967 .

[149]  Stefan Turek,et al.  A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics , 2006 .

[150]  Yoshihide Tominaga,et al.  CFD simulation of micro-scale pollutant dispersion in the built environment , 2013 .

[151]  S. J. Zan Experiments on circular cylinders in crossflow at Reynolds numbers up to 7 million , 2008 .

[152]  H. C. Shellard COLLAPSE OF COOLING TOWERS IN A GALE, FERRYBRIDGE, 1 NOVEMBER 1965 , 1967 .

[153]  Guillaume Dufour,et al.  Time-domain harmonic balance method for aerodynamic and aeroelastic simulations of turbomachinery flows , 2013 .

[154]  J. Ohayon,et al.  Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: FSI vs. CFD , 2012 .

[155]  Peter Stansby,et al.  Simulation of turbulent flows around a circular cylinder using nonlinear eddy-viscosity modelling: steady and oscillatory ambient flows , 2003 .

[156]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[157]  Jacob K. White,et al.  An Arnoldi approach for generation of reduced-order models for turbomachinery , 2000 .

[158]  P. Moin,et al.  NUMERICAL SIMULATION OF THE FLOW AROUND A CIRCULAR CYLINDER AT HIGH REYNOLDS NUMBER , 2003 .

[159]  K. Lilly The representation of small-scale turbulence in numerical simulation experiments , 1966 .

[160]  L. G. Jaeger,et al.  Dynamics of structures , 1990 .

[161]  Rajeev K. Jaiman,et al.  Numerical study of the flow interference between tandem cylinders employing non-linear hybrid URANS–LES methods , 2015 .

[162]  Jan Vierendeels,et al.  Unsteady Reynolds averaged navier-stokes simulation of the post-critical flow around a closely spaced group of silos , 2012 .

[163]  Claudio Mannini,et al.  Numerical investigation on the three-dimensional unsteady flow past a 5:1 rectangular cylinder , 2011 .

[164]  F. Menter,et al.  Adaptation of Eddy-Viscosity Turbulence Models to Unsteady Separated Flow Behind Vehicles , 2004 .

[165]  Jan Vierendeels,et al.  Analysis of the clinical performance of an aortic BMHV by numerical simulation , 2012 .

[166]  Van Der Cruyssen,et al.  STRUCTURAL DEFICIENCIES OF NATURAL DRAUGHT COOLING TOWERS AT UK POWER STATIONS. PART 3: STRENGTHENING OF NATURAL DRAUGHT COOLING TOWER SHELLS. , 1994 .

[167]  David Sumner,et al.  Two staggered circular cylinders of equal diameter in cross-flow , 2005 .

[168]  WEI Zhigang,et al.  Prediction of high Reynolds number flow , 2007 .

[169]  R A Pope,et al.  STRUCTURAL DEFICIENCIES OF NATURAL DRAUGHT COOLING TOWERS AT UK POWER STATIONS. PART 1: FAILURES AT FERRYBRIDGE AND FIDDLERS FERRY. , 1994 .

[170]  C. Scruton,et al.  Wind Effects on Structures , 1970 .

[171]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[172]  Jan Carmeliet,et al.  CONSERVATIVE MODELLING OF THE MOISTURE AND HEAT TRANSFER IN BUILDING COMPONENTS UNDER ATMOSPHERIC EXCITATION , 2007 .

[173]  Roland Wüchner,et al.  Fluid-Structure Interaction in the Context of Shape Optimization and Computational Wind Engineering , 2011 .

[174]  M. Cullen,et al.  Numerical Prediction and Dynamic Meteorology, 2nd Edn. By G. J. HALTINER and R. T. WILLIAMS. Wiley, 1980. 477 pp. £26.90. , 1984, Journal of Fluid Mechanics.

[175]  Roland Wüchner Mechanik und Numerik der Formfindung und Fluid-Struktur-Interaktion von Membrantragwerken , 2006 .

[176]  William F. Swiger,et al.  Resonant Vibration of Steel Stacks , 1956 .

[177]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[178]  Claudio Borri,et al.  Determination of flutter derivatives for a box-girder bridge deck through URANS simulations , 2011 .

[179]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[180]  Wan Ki Chow,et al.  Numerical studies on air flow around a cube , 2005 .

[181]  P. Richards,et al.  Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model , 1993 .

[182]  G. Schewe On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers , 1983, Journal of Fluid Mechanics.

[183]  Joris Degroote,et al.  Development of algorithms for the partitioned simulation of strongly coupled fluid-structure interaction problems , 2010 .

[184]  Richard H. Pletcher,et al.  Inflow conditions for the large eddy simulation of turbulent boundary layers: A dynamic recycling procedure , 2006, J. Comput. Phys..

[185]  E. D. Langre,et al.  Fluid-Structure Interactions: Cross-Flow-Induced Instabilities , 2010 .

[186]  Yasushi Uematsu,et al.  Mechanism of ovalling vibrations of cylindrical shells in cross flow , 2001 .

[187]  Charles A. Taylor,et al.  Predicting changes in blood flow in patient-specific operative plans for treating aortoiliac occlusive disease , 2005, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[188]  S. Balachandar,et al.  Effect of three‐dimensionality on the lift and drag of nominally two‐dimensional cylinders , 1995 .

[189]  R E Bartels,et al.  Computational aeroelastic modelling of airframes and turbomachinery: progress and challenges , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[190]  Ekkehard Ramm,et al.  Accelerated iterative substructuring schemes for instationary fluid-structure interaction , 2001 .

[191]  Yang Liu,et al.  A finite cantilevered cylinder in a cross-flow , 2005 .

[192]  I. Orlanski A rational subdivision of scales for atmospheric processes , 1975 .

[193]  B. Boersma,et al.  Direct Numerical Simulation on a Cartesian Mesh of the Flow through a Tube Bundle , 2004 .

[194]  P. Bradshaw,et al.  Momentum transfer in boundary layers , 1977 .

[195]  Gary Easom,et al.  Improved turbulence models for computational wind engineering , 2000 .

[196]  R. Glowinski,et al.  A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations , 1994 .

[197]  J. Sørensen,et al.  Large-eddy simulation of atmospheric flow over complex terrain , 2007 .

[198]  Ismail Celik,et al.  Long time-averaged solutions of turbulent flow past a circular cylinder , 1995 .

[199]  A. Laneville,et al.  An analytical model of the ovalling oscillations of clamped-free and clamped-clamped cylindrical shells in cross-flow , 1991 .

[200]  Stefano Mauro,et al.  Wind turbine CFD modeling using a correlation-based transitional model , 2013 .

[201]  Geert Degrande,et al.  Finite element modelling of a silo based on experimental modal analysis , 2006 .

[202]  Jan Carmeliet,et al.  Modification of pedestrian wind comfort in the Silvertop Tower passages by an automatic control system , 2004 .

[203]  Jorg Schluter,et al.  Boundary Conditions for LES in Coupled Computations , 2003 .

[204]  Nicolas G. Wright,et al.  On the use of the k–ε model in commercial CFD software to model the neutral atmospheric boundary layer , 2007 .

[205]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[206]  Navier-Stokes Equation Fluid Dynamics and the , 2012 .

[207]  C. Baker The turbulent horseshoe vortex , 1980 .

[208]  P. Spalart Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach , 1997 .

[209]  J. W. Melin,et al.  Detailed Application of a Technology for the Formulation and Expression of Standards: Applied to The American National Standard Building Code Requirements for Minimum Design Loads in Buildings and Other Structures (ANSI A58.1-1972) , 1978 .

[210]  Arndt Goldack Tragverhalten von hohen Stahlbetontürmen für Aufwindkraftwerke , 2012 .

[211]  David C. Wilcox,et al.  Comparison of two-equation turbulence models for boundary layers with pressure gradient , 1993 .

[212]  A. Laneville,et al.  Wind-Induced Ovalling Oscillations of Cylindrical Shells: Critical Onset Velocity and Mode Prediction , 1996 .

[213]  P. Spalart Direct simulation of a turbulent boundary layer up to Rθ = 1410 , 1988, Journal of Fluid Mechanics.

[214]  Wolfgang A. Wall,et al.  An XFEM Based Fixed-Grid Approach for 3D Fluid-Structure Interaction , 2011 .

[215]  Jan Vierendeels,et al.  Numerical analysis of the fluid-structure interaction in a membrane pump , 2010 .

[216]  Peter Richards,et al.  A 6m cube in an atmospheric boundary layer flow. Part I. Full-scale and wind-tunnel results , 2002 .

[217]  D. S. Weaver,et al.  Vortex Shedding In Rotated Square Arrays , 1993 .

[218]  Samuel Holmes,et al.  CFD High L/D Riser Modeling Study , 2007 .

[219]  B. Launder,et al.  Progress in the development of a Reynolds-stress turbulence closure , 1975, Journal of Fluid Mechanics.

[220]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[221]  C. Knisely STROUHAL NUMBERS OF RECTANGULAR CYLINDERS AT INCIDENCE: A REVIEW AND NEW DATA , 1990 .

[222]  Yasushi Uematsu,et al.  Design wind loads for open-topped storage tanks in various arrangements , 2015 .

[223]  Johan Meyers,et al.  Optimal turbine spacing in fully developed wind farm boundary layers , 2012 .

[224]  M. P. Norton Flow-induced vibration: 2nd edition, R.D. Blevins, Van Nostrand Reinhold, New York, 1990, 451 pages, $59.95. , 1991 .

[225]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[226]  J. Quirk An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies , 1994 .

[227]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[228]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[229]  Cheol Woo Park,et al.  Effects of free-end corner shape on flow structure around a finite cylinder , 2004 .

[230]  M. P. Païdoussis,et al.  Flow visualization of the interstitial cross-flow through parallel triangular and rotated square arrays of cylinders , 1995 .

[231]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .

[232]  Charbel Farhat,et al.  Higher-Order Subiteration-Free Staggered Algorithm for Nonlinear Transient Aeroelastic Problems , 1998 .

[233]  Joris Degroote,et al.  Accuracy of Carotid Strain Estimates From Ultrasonic Wall Tracking: A Study Based on Multiphysics Simulations and In Vivo Data , 2012, IEEE Transactions on Medical Imaging.

[234]  S. Murakami,et al.  CFD analysis of wind-structure interaction for oscillating square cylinders , 1997 .

[235]  Timon Rabczuk,et al.  Fluid–structure interaction in lower airways of CT‐based lung geometries , 2008 .

[236]  J. Batina Unsteady Euler airfoil solutions using unstructured dynamic meshes , 1989 .

[237]  J. Kaimal,et al.  Spectral Characteristics of Surface-Layer Turbulence , 1972 .

[238]  Ahsan Kareem,et al.  Investigation of interference effects for a group of finite cylinders , 1998 .

[239]  Bruce M. Irons,et al.  A version of the Aitken accelerator for computer iteration , 1969 .

[240]  J. D. Holmes,et al.  Wind Loading of Structures , 2001 .

[241]  K. T. Chan,et al.  Flow pattern and velocity field distribution of cross-flow around four cylinders in a square configuration at a low Reynolds number , 2003 .

[242]  Svend Ole Hansen,et al.  Wind Loads on Structures , 1997 .

[243]  Robert H. Scanlan,et al.  AIR FOIL AND BRIDGE DECK FLUTTER DERIVATIVES , 1971 .

[244]  D. Weaver Flow-induced vibration , 2014 .

[245]  Michael O'Connor,et al.  Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe , 2013 .

[246]  S. V. Korobkov,et al.  Vortex pattern of the turbulent flow around a single cube on a flat surface and its heat transfer at different attack angles , 2010 .

[247]  S. Orszag,et al.  Development of turbulence models for shear flows by a double expansion technique , 1992 .

[248]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[249]  Haym Benaroya,et al.  An overview of modeling and experiments of vortex-induced vibration of circular cylinders , 2005 .

[250]  Robert H. Scanlan,et al.  Observations on Low-Speed Aeroelasticity , 2002 .

[251]  Charbel Farhat,et al.  CFD‐Based Nonlinear Computational Aeroelasticity , 2004 .

[252]  Robert Flemming Mikkelsen,et al.  Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach , 2012 .

[253]  Bje Bert Blocken,et al.  A combined CFD–HAM approach for wind-driven rain on building facades , 2007 .

[254]  R. Ulinskas,et al.  Fluid dynamics and flow-induced vibrations of tube banks , 1988 .

[255]  P. Richards,et al.  Unsteady flow on the sides of a 6m cube , 2002 .

[256]  James R. Forsythe,et al.  Prediction of the flow over a circular cylinder at high Reynolds number using detached-eddy simulation , 2008 .

[257]  T. Kármán Progress in the Statistical Theory of Turbulence , 1948 .

[258]  Ysbrand H. Wijnant,et al.  Simulation of tyre/road noise by means of a FEM/BEM approach , 2012 .

[259]  A. G. Davenport,et al.  The relationship of wind structure to wind loading , 1966 .

[260]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .