Persistent luminescence in nanophosphors for long term in-vivo bio-imaging

We presently introduce a novel generation of optical nanoprobes, based on chromium-doped zinc gallate, whose persistent luminescence can be activated in vivo through living tissues using highly penetrating low energy photons from the red region of the visible spectrum. Surface functionalization of this photonic nanoprobe can be adjusted to favor multiple challenging biomedical applications.

[1]  Véronique Préat,et al.  To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[2]  Didier Gourier,et al.  The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. , 2014, Nature materials.

[3]  B. Viana,et al.  Blue emitting hybrid organic–inorganic materials , 2001 .

[4]  D. Scherman,et al.  In vivo optical imaging with rare earth doped Ca_2Si_5N_8 persistent luminescence nanoparticles , 2012 .

[5]  Feng Liu,et al.  Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8 , 2013, Scientific Reports.

[6]  J. Ueda,et al.  A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors , 2014 .

[7]  Sunil Kumar Singh Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications , 2014 .

[8]  B. Viana,et al.  Red long-lasting phosphorescence (LLP) in β-TCP type Ca9.5Mn(PO4)7 compounds , 2011 .

[9]  Chunlin Liu,et al.  Long persistent near infrared luminescence nanoprobes LiGa5O8:Cr3+-PEG-OCH3 for in vivo imaging , 2014 .

[10]  D. Scherman,et al.  Persistent luminescence of AB2O4:Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: New biomarkers for in vivo imaging , 2014 .

[11]  Junpeng Shi,et al.  Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. , 2015, Biomaterials.

[12]  Bruno Viana,et al.  Persistent and Photostimulated Red Emission in CaS:Eu2+,Dy3+ Nanophosphors , 2015 .

[13]  Feng Liu,et al.  Photostimulable Near-Infrared Persistent Luminescent Nanoprobes for Ultrasensitive and Longitudinal Deep-Tissue Bio-Imaging , 2014, Theranostics.

[14]  Kostas Kostarelos,et al.  Tumor targeting of functionalized quantum dot-liposome hybrids by intravenous administration. , 2009, Molecular pharmaceutics.

[15]  P. Dorenbos,et al.  Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors , 2014 .

[16]  Didier Gourier,et al.  Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. , 2011, Journal of the American Chemical Society.

[17]  B. Viana,et al.  ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness. , 2011, Optics express.

[18]  D. Scherman,et al.  Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery. , 2014, Nanoscale.

[19]  Didier Gourier,et al.  Storage of Visible Light for Long-Lasting Phosphorescence in Chromium-Doped Zinc Gallate , 2014 .

[20]  Seppo Ylä-Herttuala,et al.  In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles. , 2012, Bioconjugate chemistry.

[21]  B. Uberuaga,et al.  The effect of Ga‐doping on the defect chemistry of RE3Al5O12 garnets , 2013 .

[22]  B. Viana,et al.  Rare-earth-doped hybrid siloxane–oxide coatings with luminescent properties , 1993 .

[23]  R. Jain,et al.  Delivering nanomedicine to solid tumors , 2010, Nature Reviews Clinical Oncology.

[24]  Setsuhisa Tanabe,et al.  Tunable trap depth in Zn(Ga1−xAlx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence , 2013 .

[25]  M. Nikl,et al.  Intrinsic defects, nonstoichiometry, and aliovalent doping of A 2+ B 4+ O 3 perovskite scintillators , 2014 .

[26]  E. Suard,et al.  How to induce red persistent luminescence in biocompatible Ca3(PO4)2 , 2013 .

[27]  D. Scherman,et al.  In vivo imaging with persistent luminescence silicate-based nanoparticles , 2013 .

[28]  Thomas Maldiney,et al.  Gadolinium‐Doped Persistent Nanophosphors as Versatile Tool for Multimodal In Vivo Imaging , 2015 .

[29]  Salaheddine Alahrache,et al.  Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4 , 2013 .

[30]  B. Viana,et al.  The importance of inversion disorder in the visible light induced persistent luminescence in Cr³⁺ doped AB₂O₄ (A = Zn or Mg and B = Ga or Al). , 2014, Physical chemistry chemical physics : PCCP.