Affine Density in Wavelet Analysis
暂无分享,去创建一个
[1] Yang Wang. Sparse complete Gabor systems on a lattice , 2004 .
[2] J. Ramanathan,et al. Incompleteness of Sparse Coherent States , 1995 .
[3] C. Chui,et al. Characterization of General Tight Wavelet Frames with Matrix Dilations and Tightness Preserving Oversampling , 2002 .
[4] A. Olevskiǐ,et al. Almost Integer Translates. Do Nice Generators Exist? , 2004 .
[5] A. Ron,et al. Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .
[6] P. Casazza. THE ART OF FRAME THEORY , 1999, math/9910168.
[7] R. Balan,et al. Density, overcompleteness, and localization of frames , 2006 .
[8] D. Walnut,et al. Differentiation and the Balian-Low Theorem , 1994 .
[9] Wenchang Sun,et al. Irregular Gabor frames and their stability , 2002 .
[10] Demetrio Labate,et al. A unified characterization of reproducing systems generated by a finite family, II , 2002 .
[11] C. Heil,et al. Density of frames and Schauder bases of windowed exponentials , 2008 .
[12] Vadim Malyshev,et al. Asymptotic combinatorics with application to mathematical physics , 2002 .
[13] H. Feichtinger,et al. Banach spaces related to integrable group representations and their atomic decompositions. Part II , 1989 .
[14] Peter G. Casazza,et al. Gabor Frames over Irregular Lattices , 2003, Adv. Comput. Math..
[15] Walter Schachermayer,et al. Stochastic Methods in Finance , 2004 .
[16] N. Wiener. The Fourier Integral: and certain of its Applications , 1933, Nature.
[17] H. Feichtinger,et al. Banach Spaces of Distributions Defined by Decomposition Methods, I , 1985 .
[18] Wojciech Czaja,et al. The geometry of sets of parameters of wave packet frames , 2006 .
[19] H. Feichtinger. Generalized Amalgams, With Applications to Fourier Transform , 1990, Canadian Journal of Mathematics.
[20] Gitta Kutyniok,et al. The local integrability condition for wavelet frames , 2006 .
[21] G. Weiss,et al. A First Course on Wavelets , 1996 .
[22] T. Strohmer,et al. Efficient numerical methods in non-uniform sampling theory , 1995 .
[23] Wenchang Sun,et al. Density and stability of wavelet frames , 2003 .
[24] Thomas Strohmer,et al. GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.
[25] I. Daubechies,et al. Gabor Time-Frequency Lattices and the Wexler-Raz Identity , 1994 .
[26] R. Balan. Stability theorems for Fourier frames and wavelet Riesz bases , 1997 .
[27] Charles K. Chui,et al. An Introduction to Wavelets , 1992 .
[28] L. Baggett,et al. Processing a radar signal and representations of the discrete Heisenberg group , 1990 .
[29] K. Gröchenig. Irregular sampling of wavelet and short-time Fourier transforms , 1993 .
[30] Dennis Gabor,et al. Theory of communication , 1946 .
[31] O. Christensen. Frames, Riesz bases, and discrete Gabor/wavelet expansions , 2001 .
[32] H. Feichtinger. On a new Segal algebra , 1981 .
[33] C. Chui,et al. Inequalities of Littlewood-Paley type for frames and wavelets , 1993 .
[34] H. Feichtinger,et al. Varying the time-frequency lattice of Gabor frames , 2003 .
[35] S. Mallat. A wavelet tour of signal processing , 1998 .
[36] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[37] Wenchang Sun,et al. Density of irregular wavelet frames , 2004 .
[38] C. Chui. Wavelets: A Tutorial in Theory and Applications , 1992 .
[39] Karlheinz Gröchenig,et al. Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.
[40] Kenneth R. Meyer,et al. Periodic Solutions of the N-Body Problem , 2000 .
[41] David R. Larson,et al. Wavelet sets in ℝn , 1997 .
[42] C. Heil. History and Evolution of the Density Theorem for Gabor Frames , 2007 .
[43] Y. Meyer. Wavelets and Operators , 1993 .
[44] C. Chui,et al. Orthonormal wavelets and tight frames with arbitrary real dilations , 2000 .
[45] S. Cerrai. Second Order Pde's in Finite and Infinite Dimension: A Probabilistic Approach , 2001 .
[46] Charles K. Chui,et al. Compactly Supported Tight Affine Frames with Integer Dilations and Maximum Vanishing Moments , 2003, Adv. Comput. Math..
[47] 8 - Affine, Quasi-Affine and Co-Affine Wavelets , 2003 .
[48] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .
[49] A. Olevskiǐ. Completeness in L2(ℝ) of almost integer translates , 1997 .
[50] A. Ron,et al. Tight compactly supported wavelet frames of arbitrarily high smoothness , 1998 .
[51] A. Grossmann,et al. TRANSFORMS ASSOCIATED TO SQUARE INTEGRABLE GROUP REPRESENTATION. 2. EXAMPLES , 1986 .
[52] H. Landau. Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .
[53] A. Ron,et al. Generalized Shift-Invariant Systems , 2005 .
[54] I. Daubechies,et al. Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .
[55] C. Heil. An Introduction to Weighted Wiener Amalgams , 2003 .
[56] Gitta Kutyniok,et al. Affine Density, Frame Bounds, and the Admissibility Condition for Wavelet Frames , 2007 .
[57] H. Triebel. Theory of Function Spaces III , 2008 .
[58] J. Lagarias,et al. Structure of tilings of the line by a function , 1996 .
[59] Brody Dylan Johnson,et al. On the Oversampling of Affine Wavelet Frames , 2003, SIAM J. Math. Anal..
[60] K. Gröchenig. Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .
[61] D. Speegle. On the existence of wavelets for non-expansive dilation matrices , 2003 .
[62] Charles K. Chui,et al. Affine frames, quasi-affine frames, and their duals , 1998, Adv. Comput. Math..
[63] Gitta Kutyniok,et al. The Homogeneous Approximation Property for wavelet frames , 2007, J. Approx. Theory.
[64] Peder A. Olsen,et al. A note on irregular discrete wavelet transforms , 1992, IEEE Trans. Inf. Theory.
[65] Wenchang Sun. Density of wavelet frames , 2007 .
[66] Nizar Touzi,et al. Paris-Princeton Lectures on Mathematical Finance 2002 , 2003 .
[67] G. Kutyniok,et al. Density of weighted wavelet frames , 2003 .
[68] Vivek K Goyal,et al. Quantized Frame Expansions with Erasures , 2001 .
[69] H. Landau. On the density of phase-space expansions , 1993, IEEE Trans. Inf. Theory.
[70] Eric Lombardi,et al. Oscillatory Integrals and Phenomena Beyond all Algebraic Orders: with Applications to Homoclinic Orbits in Reversible Systems , 2000 .
[71] L. Hörmander,et al. An introduction to complex analysis in several variables , 1973 .
[72] E. C. Titchmarsh. On Conjugate Functions , 1929 .
[73] Peter G. Casazza,et al. Weyl-Heisenberg frames, translation invariant systems and the Walnut representation , 1999, math/9910169.
[74] G. Folland. A course in abstract harmonic analysis , 1995 .
[75] Wenchang Sun,et al. Irregular wavelet/Gabor frames , 2002 .
[76] Ajem Guido Janssen,et al. Signal Analytic Proofs of Two Basic Results on Lattice Expansions , 1994 .
[77] I. Singer,et al. Bases in Banach Spaces II , 1970 .
[78] Pierre Bernard,et al. Lectures on Probability Theory and Statistics: Ecole d'Ete de Probabilites de Saint-Flour XXVI - 1996 , 1997 .
[79] H. Feichtinger,et al. Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .
[80] Olivier Catoni,et al. Statistical learning theory and stochastic optimization , 2004 .
[81] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[82] Demetrio Labate,et al. Some remarks on the unified characterization of reproducing systems , 2005 .
[83] C. Chui,et al. Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .
[84] Stéphane Jaffard,et al. A density criterion for frames of complex exponentials. , 1991 .
[85] G. Kutyniok,et al. Beurling Dimension of Gabor Pseudoframes for Affine Subspaces , 2008 .
[86] E. Hewitt,et al. Abstract Harmonic Analysis , 1963 .
[87] Joram Lindenstrauss,et al. Classical Banach spaces , 1973 .
[88] K. Seip. Beurling type density theorems in the unit disk , 1993 .
[89] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[90] Karlheinz Gröchenig,et al. On Landau's Necessary Density Conditions for Sampling and Interpolation of Band-Limited Functions , 1996 .
[91] O. Christensen,et al. Irregular Wavelet Frames and Gabor Frames , 2001 .
[92] O. Christensen,et al. Density of Gabor Frames , 1999 .
[93] R. Balan,et al. Density, Overcompleteness, and Localization of Frames. II. Gabor Systems , 2005 .
[94] R. Chan,et al. Tight frame: an efficient way for high-resolution image reconstruction , 2004 .
[95] M. Rieffel. Von Neumann algebras associated with pairs of lattices in Lie groups , 1981 .
[96] K. Seip. Density theorems for sampling and interpolation in the Bargmann-Fock space I , 1992, math/9204238.
[97] Demetrio Labate,et al. Oversampling, quasi-affine frames, and wave packets , 2004 .
[98] Marcin Bownik,et al. The Spectral Function of Shift-Invariant Spaces , 2003 .
[99] D. Larson,et al. Wandering Vectors for Unitary Systems and Orthogonal Wavelets , 1998 .
[100] Olivier Pironneau,et al. Optimal Shape Design , 2000 .
[101] B. D. Johnson. On the relationship between quasi-affine systems and the ` a trous algorithm , 2002 .
[102] Christopher Heil,et al. Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..
[103] John J. Benedetto,et al. Sigma-delta quantization and finite frames , 2004, ICASSP.