Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit

Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin–valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin–Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.

[1]  A. Fert,et al.  Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces , 2016, Nature.

[2]  J. P. Remeika,et al.  Magneto-optical properties of ferromagnetic chromium trihalides , 1966 .

[3]  Junwei Liu,et al.  Quantum spin Hall effect in two-dimensional transition metal dichalcogenides , 2014, Science.

[4]  D. Sander,et al.  The correlation between mechanical stress and magnetic anisotropy in ultrathin films , 1999 .

[5]  A. I. Lichtenstein,et al.  Ferromagnetic two-dimensional crystals: Single layers of k2cuf4 , 2013, 1311.2410.

[6]  A. Vaterlaus,et al.  Experimental confirmation of universality for a phase transition in two dimensions , 1995, Nature.

[7]  Experiments on simple magnetic model systems , 1974 .

[8]  Shiyan Li,et al.  Gate-tunable phase transitions in thin flakes of 1T-TaS2. , 2014, Nature nanotechnology.

[9]  J. Dillon,et al.  Magnetization, Resonance, and Optical Properties of the Ferromagnet CrI3 , 1965 .

[10]  W. Y. Liang,et al.  The reflectivity spectra of some group VA transition metal dichalcogenides , 1975 .

[11]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[12]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[13]  Huang,et al.  Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111). , 1994, Physical review. B, Condensed matter.

[14]  Yasuharu Nakamura,et al.  Superconductivity protected by spin-valley locking in ion-gated MoS2 , 2015, 1506.04146.

[15]  G. Steele,et al.  Fast and reliable identification of atomically thin layers of TaSe2 crystals , 2013, Nano Research.

[16]  D. Sander The magnetic anisotropy and spin reorientation of nanostructures and nanoscale films , 2004 .

[17]  Brian C. Sales,et al.  Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3 , 2015 .

[18]  Katsuaki Sato,et al.  Measurement of Magneto-Optical Kerr Effect Using Piezo-Birefringent Modulator , 1981 .

[19]  P. Kim,et al.  Nature of the quantum metal in a two-dimensional crystalline superconductor , 2015, Nature Physics.

[20]  Robert H. Swendsen,et al.  Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers , 2015, 1503.00412.

[21]  Jinlong Yang,et al.  CrXTe3 (X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors , 2014 .

[22]  A. Geim,et al.  Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene , 2006, cond-mat/0602565.

[23]  K. T. Law,et al.  Ising pairing in superconducting NbSe2 atomic layers , 2015, 1507.08731.

[24]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[25]  F. Moussa,et al.  2D Ising-Like Ferromagnetic Behaviour for the Lamellar Cr2Si2Te6 Compound: A Neutron Scattering Investigation , 1995 .

[26]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[27]  Craig M. Herzinger,et al.  Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation , 1998 .

[28]  L. Fu,et al.  Quantum Spin Hall Effect and Topological Field Effect Transistor in Two-Dimensional Transition Metal Dichalcogenides , 2014, 1406.2749.

[29]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[30]  Richter,et al.  Spin anisotropy of ferromagnetic films. , 1986, Physical review letters.

[31]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[32]  L. Néel Anisotropie magnétique superficielle et surstructures d'orientation , 1954 .

[33]  Chi-Hang Lam,et al.  Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides , 2015, 1507.07275.

[34]  H. Ebert Magneto-optical effects in transition metal systems , 1996 .

[35]  Jun Zhang,et al.  Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals , 2016 .

[36]  Huiwen Ji,et al.  Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal , 2016, 1604.08745.

[37]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[38]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[39]  K. T. Law,et al.  Evidence for two-dimensional Ising superconductivity in gated MoS2 , 2015, Science.

[40]  Gradmann,et al.  Critical behavior of the uniaxial ferromagnetic monolayer Fe(110) on W(110). , 1996, Physical review. B, Condensed matter.

[41]  Kai Xiao,et al.  Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material , 2016 .

[42]  Yonggang Huang,et al.  Transfer printing by kinetic control of adhesion to an elastomeric stamp , 2006 .