Integration and Scheduling of Core Modules

In this chapter, a theoretical framework of brain-inspired intelligence is finally established in synergetical implementation of the vision–brain, including the geospatial modeling (seen), the robotic integrated intelligence (understanding) and the brain-inspired decision system (response). For a better interpretation of these core modules and for the convenience of readers’ understanding, the planetary exploration wheeled mobile robot is employed as an example and double-layer human–machine interfaces are utilized to display how the vision–brain will function in the future. Based on the vision–brain hypothesis and the results of Chaps. 3 and 4, in order to solve a robot path-planning problem and decide an optimal path to the targets or regions of interest, obstacle avoidance through a geospatial modeling is essentially necessary. Scheduling of core modules can be further interpreted as a hierarchical cooperation process of the vision–brain with other technological modules. Alternatively, the architecture of a vision–brain can be interpreted as three-layer intelligence—seen, understanding and response. Such multilayer architecture of brain-inspired intelligence makes a better chance for extending related technologies, supporting the R&D of tele-operated machine intelligence, and has a universal significance for any future intelligent systems, especially for improving the cognition efficiency and robustness of a machine brain through a scene understanding.

[1]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[2]  J. Borenstein,et al.  Current-Based Slippage Detection and Odometry Correction for Mobile Robots and Planetary Rovers , 2006, IEEE Transactions on Robotics.

[3]  Kazuya Yoshida,et al.  Terramechanics-based high-fidelity dynamics simulation for wheeled mobile robot on deformable rough terrain , 2010, 2010 IEEE International Conference on Robotics and Automation.

[4]  William H. Farrand,et al.  The Spirit Rover9s Athena Science Investigation at Gusev Crater, Mars , 2004 .

[5]  Karl Iagnemma,et al.  Vibration-based terrain classification for planetary exploration rovers , 2005, IEEE Transactions on Robotics.

[6]  Yang Cheng,et al.  Path following using visual odometry for a Mars rover in high-slip environments , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[7]  Guangjun Liu,et al.  Longitudinal slip versus skid of planetary rovers' wheels traversing on deformable slopes , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Zhen Liu,et al.  A review of heavy-duty legged robots , 2014 .

[9]  Abhinandan Jain,et al.  ROAMS: Rover Analysis, Modeling and Simulation Software , 1999 .

[10]  Ioannis M. Rekleitis,et al.  Autonomous planetary exploration using LIDAR data , 2009, 2009 IEEE International Conference on Robotics and Automation.

[11]  Zhen Liu,et al.  Slip-ratio-coordinated control of planetary exploration robots traversing over deformable rough terrain , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  T. J. McCoy,et al.  Exploration of Victoria Crater by the Mars Rover Opportunity , 2009, Science.

[13]  Jeng Yen,et al.  Driving on Mars with RSVP Building Safe and Effective Command Sequences , 2006 .

[14]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[15]  Jeng Yen,et al.  Terrain Modelling for Immersive Visualization for the Mars Exploration Rovers , 2004 .

[16]  Andrew E. Johnson,et al.  Computer Vision on Mars , 2007, International Journal of Computer Vision.

[17]  Rachid Alami,et al.  An Architecture for Autonomy , 1998, Int. J. Robotics Res..

[18]  Gary Witus,et al.  Terrain characterization and classification with a mobile robot , 2006, J. Field Robotics.

[19]  Danielle Dumond Terrain Classification using Proprioceptive Sensors , 2011 .

[20]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[21]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[22]  Robert Ivlev,et al.  The Rocky 7 rover: a Mars sciencecraft prototype , 1997, Proceedings of International Conference on Robotics and Automation.

[23]  Rongqiang Liu,et al.  Design of Comprehensive High-fidelity/High-speed Virtual Simulation System for Lunar Rover , 2008, 2008 IEEE Conference on Robotics, Automation and Mechatronics.

[24]  Richard Volpe,et al.  Rover functional autonomy development for the mars mobile science laboratory , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[25]  Kazuya Yoshida,et al.  Terramechanics‐based model for steering maneuver of planetary exploration rovers on loose soil , 2007, J. Field Robotics.

[26]  Stergios I. Roumeliotis,et al.  Slip-compensated path following for planetary exploration rovers , 2006, Adv. Robotics.

[27]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[28]  Raymond E. Arvidson,et al.  Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover , 2010, Science.

[29]  Tara Estlin,et al.  The CLARAty architecture for robotic autonomy , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[30]  Hugh F. Durrant-Whyte,et al.  Simultaneous map building and localization for an autonomous mobile robot , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[31]  M. Judd,et al.  Supporting Increased Autonomy for a Mars Rover , 2008 .

[32]  Nobuyuki Kita,et al.  3D simultaneous localisation and map-building using active vision for a robot moving on undulating terrain , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[33]  Simon Lacroix,et al.  Decisional autonomy of planetary rovers , 2007, J. Field Robotics.

[34]  Pietro Perona,et al.  Learning and prediction of slip from visual information , 2007, J. Field Robotics.

[35]  Timothy D. Barfoot,et al.  Long-range rover localization by matching LIDAR scans to orbital elevation maps , 2010 .

[36]  Zhijun Li,et al.  Path-Following Control of Wheeled Planetary Exploration Robots Moving on Deformable Rough Terrain , 2014, TheScientificWorldJournal.

[37]  Rover Team Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner. Rover Team. , 1997, Science.

[38]  David Bonyuet,et al.  Cooperative robot teleoperation through virtual reality interfaces , 2002, Proceedings Sixth International Conference on Information Visualisation.

[39]  K.S. Tso,et al.  The Web Interface for Telescience (WITS) , 1997, Proceedings of International Conference on Robotics and Automation.

[40]  Chunlai Li,et al.  China's Lunar Exploration Program: Present and future , 2008 .

[41]  Zongquan Deng,et al.  Longitudinal skid model for wheels of planetary exploration rovers based on terramechanics , 2013 .

[42]  Jo Yung Wong,et al.  Terramechanics and Off-Road Vehicle Engineering: Terrain Behaviour, Off-Road Vehicle Performance and Design , 2009 .

[43]  Robert G. Deen,et al.  Remote image analysis for Mars Exploration Rover mobility and manipulation operations , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[44]  Steven Dubowsky,et al.  Rapid physics-based rough-terrain rover planning with sensor and control uncertainty , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[45]  Duan Guangren,et al.  Terramechanics-based analysis of slipping and skidding for wheeled mobile robots , 2012, Proceedings of the 31st Chinese Control Conference.

[46]  Kazuya Yoshida,et al.  Path Following Control with Slip Compensation on Loose Soil for Exploration Rover , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  Mahmoud Tarokh,et al.  Hybrid intelligent path planning for articulated rovers in rough terrain , 2008, Fuzzy Sets Syst..

[48]  Steven Dubowsky,et al.  An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers , 2005 .

[49]  Kazuya Yoshida,et al.  Parameter identification for planetary soil based on a decoupled analytical wheel-soil interaction terramechanics model , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  Dongxu Li,et al.  Task space control of free-floating space robots using constrained adaptive RBF-NTSM , 2014 .

[51]  Danwei Wang,et al.  Modeling and Analysis of Skidding and Slipping in Wheeled Mobile Robots: Control Design Perspective , 2008, IEEE Transactions on Robotics.

[52]  Guangjun Liu,et al.  Interaction Mechanics Model for Rigid Driving Wheels of Planetary Rovers Moving on Sandy Terrain with Consideration of Multiple Physical Effects , 2015, J. Field Robotics.

[53]  R. E. Arvidson,et al.  Supporting Online Material , 2003 .

[54]  Christopher Brunskill,et al.  Terrain trafficability analysis and soil mechanical property identification for planetary rovers: A survey , 2012 .

[55]  Kazuya Yoshida,et al.  Planetary rovers’ wheel–soil interaction mechanics: new challenges and applications for wheeled mobile robots , 2011, Intell. Serv. Robotics.

[56]  John R. Wright,et al.  Driving on Mars with RSVP , 2006, IEEE Robotics & Automation Magazine.

[57]  Noboru Noguchi,et al.  Path planning of an agricultural mobile robot by neural network and genetic algorithm , 1997 .

[58]  Feng Zhou,et al.  Simulations of Mars Rover Traverses , 2014, J. Field Robotics.

[59]  Liang Ding,et al.  Experimental study and analysis of the wheels’ steering mechanics for planetary exploration wheeled mobile robots moving on deformable terrain , 2013, Int. J. Robotics Res..

[60]  D. Ming,et al.  Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater , 2004, Science.

[61]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[62]  A. F. C. Haldemann,et al.  Assessment of Mars Exploration Rover landing site predictions , 2005, Nature.

[63]  Yang Jia,et al.  Technological advancements and promotion roles of Chang’e-3 lunar probe mission , 2013 .

[64]  Alonzo Kelly,et al.  Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots , 2007, Int. J. Robotics Res..

[65]  Carol R. Stoker,et al.  Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results , 1999 .

[66]  Karl Iagnemma,et al.  Self‐supervised terrain classification for planetary surface exploration rovers , 2012, J. Field Robotics.

[67]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater , 2004, Science.

[68]  K Davis,et al.  Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.

[69]  Tara Estlin,et al.  CLARAty: Coupled Layer Architecture for Robotic Autonomy , 2000 .

[70]  Lu Yan An approach of Identifying Mechanical Parameters for Lunar Soil Based on Integrated Wheel-Soil Interaction Terramechanics Model of Rovers , 2011 .

[71]  John R. Wright,et al.  Data Visualization for Effective Rover Sequencing , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[72]  Matthew Spenko,et al.  A modified pressure–sinkage model for small, rigid wheels on deformable terrains , 2011 .

[73]  Kazuya Yoshida,et al.  The SpaceDyn: a MATLAB toolbox for space and mobile robots , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[74]  Steven Dubowsky,et al.  Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers , 2004, IEEE Transactions on Robotics.

[75]  R. V. Morris,et al.  Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow , 2013, Science.

[76]  P H Smith,et al.  Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum , 2004, Science.

[77]  S. Dubowsky,et al.  Planning and Control Algorithms for Enhanced Rough-Terrain Rover Mobility , 2001 .

[78]  Clive R. Neal,et al.  The Moon 35 years after Apollo: What's left to learn? , 2009 .

[79]  Seung-Hwan Choi,et al.  Evolutionary multi-objective optimization in robot soccer system for education , 2009, IEEE Comput. Intell. Mag..

[80]  Daniel M. Helmick,et al.  Autonomy for Mars Rovers: Past, Present, and Future , 2008, Computer.

[81]  J. Y. Wong Performance of Off-Road Vehicles , 2009 .

[82]  Stéphane Viollet,et al.  Toward Optic Flow Regulation for Wall-Following and Centring Behaviours , 2006 .

[83]  E.T. Baumgartner,et al.  The Mars Exploration Rover instrument positioning system , 2005, 2005 IEEE Aerospace Conference.

[84]  Donald B. Gennery,et al.  Traversability Analysis and Path Planning for a Planetary Rover , 1999, Auton. Robots.

[85]  Tara Estlin,et al.  CLARAty: Challenges and Steps toward Reusable Robotic Software , 2006 .

[86]  Zongquan Deng,et al.  Wheel slip-sinkage and its prediction model of lunar rover , 2010 .

[87]  Larry H. Matthies,et al.  Visual odometry on the Mars exploration rovers - a tool to ensure accurate driving and science imaging , 2006, IEEE Robotics & Automation Magazine.

[88]  Daniel L. Dvorak,et al.  Project Golden Gate: towards real-time Java in space missions , 2004, Seventh IEEE International Symposium onObject-Oriented Real-Time Distributed Computing, 2004. Proceedings..

[89]  Bernd Schäfer,et al.  Planetary rover mobility simulation on soft and uneven terrain , 2010 .

[90]  John R. Wright,et al.  Mars Exploration Rover surface operations: driving spirit at Gusev Crater , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[91]  Edward Tunstel,et al.  Mars exploration rover surface operations: driving opportunity at Meridiani Planum , 2006, IEEE Robotics Autom. Mag..

[92]  Pascal Morin,et al.  Control of Nonholonomic Mobile Robots Based on the Transverse Function Approach , 2009, IEEE Transactions on Robotics.

[93]  R. Jaumann,et al.  Context for the ESA ExoMars rover: the Panoramic Camera (PanCam) instrument , 2006, International Journal of Astrobiology.

[94]  Kazuya Yoshida,et al.  Path Planning for Planetary Exploration Rovers and Its Evaluation based on Wheel Slip Dynamics , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[95]  Keiji Nagatani,et al.  Experimental study and analysis on driving wheels' performance for planetary exploration rovers moving in deformable soil , 2011 .

[96]  Robin L. Fergason,et al.  Physical properties of the Mars Exploration Rover landing sites as inferred from Mini‐TES–derived thermal inertia , 2006 .

[97]  Simon Lacroix,et al.  Autonomous Rover Navigation on Unknown Terrains: Functions and Integration , 2000, Int. J. Robotics Res..

[98]  Robert Bauer,et al.  A dynamic terramechanic model for small lightweight vehicles with rigid wheels and grousers operating in sandy soil , 2011 .

[99]  Liang Ding,et al.  Improved explicit-form equations for estimating dynamic wheel sinkage and compaction resistance on deformable terrain , 2015 .

[100]  Laura E. Ray Estimation of Terrain Forces and Parameters for Rigid-Wheeled Vehicles , 2009, IEEE Transactions on Robotics.