An Estimator of Variance for Two-Stage Ratio Regression Estimators

[1]  Göran Ståhl,et al.  A simulation approach for accuracy assessment of two-phase post-stratified estimation in large-area LiDAR biomass surveys , 2013 .

[2]  D. Mandallaz Design-based properties of some small-area estimators in forest inventory with two-phase sampling , 2013 .

[3]  R. Nelson,et al.  Comparison of precision of biomass estimates in regional field sample surveys and airborne LiDAR-assisted surveys in Hedmark County, Norway , 2013 .

[4]  E. Næsset,et al.  Post-stratified estimation of forest area and growing stock volume using lidar-based stratifications , 2012 .

[5]  L. Bruzzone,et al.  Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data , 2012 .

[6]  Göran Ståhl,et al.  Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning , 2012 .

[7]  Göran Ståhl,et al.  Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach , 2012 .

[8]  E. Næsset,et al.  A fine-scale model for area-based predictions of tree-size-related attributes derived from LiDAR canopy heights , 2012 .

[9]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[10]  Göran Ståhl,et al.  Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area , 2011 .

[11]  Björn Nilsson,et al.  National Inventory of Landscapes in Sweden (NILS)—scope, design, and experiences from establishing a multiscale biodiversity monitoring system , 2011, Environmental monitoring and assessment.

[12]  J. Nagel,et al.  Double sampling for stratification in periodic inventories - infinite population approach. , 2010 .

[13]  Erik Næsset,et al.  Using remotely sensed data to construct and assess forest attribute maps and related spatial products , 2010 .

[14]  Erik Næsset,et al.  Advances and emerging issues in national forest inventories , 2010 .

[15]  E. Næsset,et al.  Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data , 2010 .

[16]  X. Shao,et al.  The Dependent Wild Bootstrap , 2010 .

[17]  Stephen V. Stehman,et al.  Model-assisted estimation as a unifying framework for estimating the area of land cover and land-cover change from remote sensing , 2009 .

[18]  Andrew Thomas Hudak,et al.  LiDAR Utility for Natural Resource Managers , 2009, Remote. Sens..

[19]  Geert Molenberghs,et al.  The Effective Sample Size and an Alternative Small-Sample Degrees-of-Freedom Method , 2009 .

[20]  S. Haneuse,et al.  On the Assessment of Monte Carlo Error in Simulation-Based Statistical Analyses , 2009, The American statistician.

[21]  L. Fattorini,et al.  A two-phase sampling strategy for large-scale forest carbon budgets , 2009 .

[22]  Piermaria Corona,et al.  Area-based lidar-assisted estimation of forest standing volume , 2008 .

[23]  R. Nelson,et al.  Regression Estimation Following the Square-Root Transformation of the Response , 2008, Forest Science.

[24]  M. Nilsson,et al.  Combining national forest inventory field plots and remote sensing data for forest databases , 2008 .

[25]  J. Hyyppä,et al.  Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests , 2008 .

[26]  Daniel Mandallaz,et al.  Sampling Techniques for Forest Inventories , 2007 .

[27]  L. Fattorini,et al.  Multi-stage cluster sampling for estimating average species richness at different spatial grains , 2007 .

[28]  P. Lahiri,et al.  Robust Model-Based and Model-Assisted Predictors of the Finite Population Total , 2007 .

[29]  F. Breidt,et al.  Model-Assisted Estimation of Forest Resources With Generalized Additive Models , 2007 .

[30]  S. Magnussen,et al.  Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory , 2006 .

[31]  Ronald E. McRoberts,et al.  Using satellite imagery as ancillary data for increasing the precision of estimates for the Forest Inventory and Analysis program of the USDA Forest Service , 2005 .

[32]  J. Singer,et al.  Predicting Random Effects From Finite Population Clustered Samples With Response Error , 2004 .

[33]  E. Næsset Accuracy of forest inventory using airborne laser scanning: evaluating the first nordic full-scale operational project , 2004 .

[34]  M. Canty,et al.  Automatic radiometric normalization of multitemporal satellite imagery , 2004 .

[35]  R. Little To Model or Not To Model? Competing Modes of Inference for Finite Population Sampling , 2004 .

[36]  T. Gregoire,et al.  Sampling Strategies for Natural Resources and the Environment , 2004 .

[37]  Robert C. Parker,et al.  An Application of LiDAR in a Double-Sample Forest Inventory , 2004 .

[38]  A. Olsen,et al.  Spatially Balanced Sampling of Natural Resources , 2004 .

[39]  Magnus Ekström,et al.  Subsampling Methods to Estimate the Variance of Sample Means Based on Nonstationary Spatial Data With Varying Expected Values , 2004 .

[40]  Marcello D’Orazio,et al.  Estimating the variance of the sample mean in two-dimensional systematic sampling , 2003 .

[41]  S. Stehman,et al.  Statistical sampling to characterize recent United States land-cover change , 2003 .

[42]  S. Lahiri Resampling Methods for Dependent Data , 2003 .

[43]  Partha Lahiri,et al.  On the Impact of Bootstrap in Survey Sampling and Small-Area Estimation , 2003 .

[44]  Neal A. Scott,et al.  Designing systems to monitor carbon stocks in forests and shrublands , 2002 .

[45]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[46]  T. Gregoire Design-based and model-based inference in survey sampling: appreciating the difference , 1998 .

[47]  Carl-Erik Särndal,et al.  Model Assisted Survey Sampling , 1997 .

[48]  M. Sherman Variance Estimation for Statistics Computed from Spatial Lattice Data , 1996 .

[49]  P. Lahiri,et al.  Robust Estimation of Mean Squared Error of Small Area Estimators , 1995 .

[50]  R. Sitter A resampling procedure for complex survey data , 1992 .

[51]  Ross Nelson,et al.  Estimating forest biomass and volume using airborne laser data , 1988 .

[52]  M. H. Hansen An Evaluation of Model-Dependent and Probability-Sampling Inferences in Sample Surveys , 1983 .

[53]  R. Royall The Linear Least-Squares Prediction Approach to Two-Stage Sampling , 1976 .

[54]  D. M. Ellis,et al.  Applied Regression Analysis , 1968 .

[55]  Satterthwaite Fe An approximate distribution of estimates of variance components. , 1946 .

[56]  Göran Ståhl,et al.  Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .

[57]  R. Nelson,et al.  Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway , 2011 .

[58]  P. Gasparini,et al.  The Italian National forest inventory: survey methods for carbon pools assessment. , 2010 .

[59]  C. Särndal,et al.  A new face on two-phase sampling with calibration estimators , 2010 .

[60]  Richard Valliant,et al.  Finite population sampling and inference : a prediction approach , 2000 .

[61]  R. Czaplewski,et al.  National forest inventory in the USA: An outline of the procedure , 1997 .

[62]  Jun Shao,et al.  Invited Discussion Paper Resampling Methods in Sample Surveys , 1996 .

[63]  H. Schreuder,et al.  The Alaska four-phase forest inventory sampling design using remote sensing and ground sampling , 1995 .

[64]  Pol Coppin,et al.  Satellite inventory of Minnesota forest resources , 1994 .

[65]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.