A Europe-Wide Experiment for Assessing the Impact of Genotype-Environment Interactions on the Vitality and Performance of Honey Bee Colonies: Experimental Design and Trait Evaluation

A Europe-Wide Experiment for Assessing the Impact of Genotype-Environment Interactions on the Vitality and Performance of Honey Bee Colonies: Experimental Design and Trait Evaluation An international experiment to estimate the importance of genotype-environment interactions on vitality and performance of honey bees and on colony losses was run between July 2009 and March 2012. Altogether 621 bee colonies, involving 16 different genetic origins of European honey bees, were tested in 21 locations spread in 11 countries. The genetic strains belonged to the subspecies A. m. carnica, A. m. ligustica, A. m. macedonica, A. m. mellifera, A. m. siciliana. At each location, the local strain of bees was tested together with at least two "foreign" origins, with a minimum starting number of 10 colonies per origin. The common test protocol for all the colonies took into account colony survival, bee population in spring, summer and autumn, honey production, pollen collection, swarming, gentleness, hygienic behaviour, Varroa destructor infestation, Nosema spp. infection and viruses. Data collection was performed according to uniform methods. No chemical treatments against Varroa or other diseases were applied during the experiment. This article describes the details of the experiment set-up and the work protocol. Określenie Wpływu Interakcji Genetyczno-Środowiskowych Na Wydajność I Witalność Rodzin Pszczelich W Europie: Projekt Doswiadczenia I Metodyka Pomiaru Cech Badania wpływu interakcji genetyczno-srodowiskowych na żywotność pszczół miodnych oraz na straty rodzin pszczelich rozpoczęto w lipcu 2009 roku, a zakończono 31 marca 2012. W ramach międzynarodowych badań obserwowano w 21 pasiekach rozmieszczonych w 11 krajach europejskich, łącznie 621 rodzin pszczelich pochodzących z 16 populacji różnych genetycznie. Były to pszczoły należące do podgatunków: A. m. carnica, A. m. ligustica, A. m. macedonica, A. m. mellifera, A. m. siciliana. W każdej z pasiek porównywano co najmniej 10 rodzin pszczół z populacji lokalnej przynajmniej z dwiema grupami (po 10 rodzin w grupie) populacji "obcych". Badano następujące cechy: przeżywalność pszczół, liczbę pszczół w rodzinach wiosną, latem i jesienią, wydajność miodową i pyłkową, rojliwość, łagodność, zachowanie higieniczne, stopień porażenia przez Varroa, zakażenie Nosema spp, obecność wirusów. We wszystkich rodzinach doświadczalnych zastosowano zunifikowane metody gospodarki pasiecznej i pomiaru cech. W okresie doświadczenia w badanych rodzinach pszczelich nie stosowano żadnych środków leczniczych bez względu na stopień porażenia przez pasożyty czy obecność chorób. W artykule opisano materiał, harmonogram i metodę wykonania badań.

[1]  J. Biesmeijer,et al.  Global pollinator declines: trends, impacts and drivers. , 2010, Trends in ecology & evolution.

[2]  R. Büchler,et al.  Breeding for resistance to Varroa destructor in Europe , 2010, Apidologie.

[3]  D. Steinkraus,et al.  The natural occurrence of Pandora heteropterae (Zygomycetes: Entomophthorales) infecting Lygus lineolaris (Hemiptera: Miridae). , 2010, Journal of invertebrate pathology.

[4]  P. Kryger,et al.  Conserving diversity and vitality for honey bee breeding , 2010 .

[5]  N. Carreck,et al.  Honey bee colony losses , 2010 .

[6]  M. Berenbaum,et al.  Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera) , 2009, Proceedings of the National Academy of Sciences.

[7]  Marcelo A. Aizen,et al.  The Global Stock of Domesticated Honey Bees Is Growing Slower Than Agricultural Demand for Pollination , 2009, Current Biology.

[8]  S. Bougeard,et al.  Influence of Pesticide Residues on Honey Bee (Hymenoptera: Apidae) Colony Health in France , 2009, Environmental entomology.

[9]  E. De Pauw,et al.  Does Imidacloprid Seed-Treated Maize Have an Impact on Honey Bee Mortality? , 2009, Journal of economic entomology.

[10]  J. Settele,et al.  Economic valuation of the vulnerability of world agriculture confronted with pollinator decline , 2009 .

[11]  I. Fries,et al.  Possible host-parasite adaptations in honey bees infested by Varroa destructor mites , 2007, Apidologie.

[12]  J. Rousselle,et al.  Honey bee colonies that have survived Varroa destructor , 2007, Apidologie.

[13]  Jay D. Evans,et al.  A Metagenomic Survey of Microbes in Honey Bee Colony Collapse Disorder , 2007, Science.

[14]  M. Higes,et al.  Outcome of Colonization of Apis mellifera by Nosema ceranae , 2007, Applied and Environmental Microbiology.

[15]  Jeffrey W. Harris Bees with Varroa Sensitive Hygiene preferentially remove mite infested pupae aged ≤ five days post capping , 2007 .

[16]  Raquel Martín,et al.  Nosema ceranae, a new microsporidian parasite in honeybees in Europe. , 2006, Journal of invertebrate pathology.

[17]  T. Rinderer,et al.  Resistance to the parasitic mite Varroa destructor in honey bees from far-eastern Russia , 2001 .

[18]  M. Spivak,et al.  Varroa destructor Infestation in Untreated Honey Bee (Hymenoptera: Apidae) Colonies Selected for Hygienic Behavior , 2001, Journal of economic entomology.

[19]  Jeffrey W. Harris,et al.  Changes in reproduction of Varroa destructor after honey bee queens were exchanged between resistant and susceptible colonies , 2000 .

[20]  E. Crane Bees and Beekeeping: Science Practice and World Resources , 1990 .

[21]  T. Seeley Honey bees of the Arnot Forest: a population of feral colonies persisting with Varroa destructor in the northeastern United States , 2011, Apidologie.

[22]  D. vanEngelsdorp,et al.  A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. , 2010, Journal of invertebrate pathology.

[23]  G. Budge,et al.  The Acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. , 2010, Journal of invertebrate pathology.

[24]  E. Genersch,et al.  Deformed wing virus. , 2010, Journal of invertebrate pathology.

[25]  P. Rosenkranz,et al.  Biology and control of Varroa destructor. , 2010, Journal of invertebrate pathology.

[26]  D. Lightner,et al.  Phylogenetic analysis of the pathogenic bacteria Spiroplasma penaei based on multilocus sequence analysis. , 2010, Journal of invertebrate pathology.

[27]  Zeyang Zhou,et al.  Identification of NbME MITE families: potential molecular markers in the microsporidia Nosema bombycis. , 2010, Journal of invertebrate pathology.

[28]  Axel Decourtye,et al.  The sublethal effects of pesticides on beneficial arthropods. , 2007, Annual review of entomology.

[29]  M. Spivak,et al.  The relationship between hygienic behavior and suppression of mite reproduction as honey bee (Apis mellifera) mechanisms of resistance to Varroa destructor , 2006 .

[30]  K. Bienefeld,et al.  Survival test without treatment against varroatosis: the island project in Croatia , 2002 .

[31]  M. Spivak Honey bee hygienic behavior and defense against Varroa jacobsoni , 1996 .

[32]  N. Koeniger,et al.  Selektion auf Verkurzung der Zellverdeckelungsdauer [ZVD] der Arbeiterinnenbrut von Apis mellifera carnica , 1992 .

[33]  N. Koeniger,et al.  Breeding for a short post-capping period in Apis mellifera carnica worker brood after initial crossing with Apis mellifera capensis , 1992 .

[34]  L. Gerig,et al.  ÜBERPRÜFUNG DER SCHÄTZMETHODE ZUR ERMITTLUNG DER BRUTFLÄCHE UND DER ANZAHL ARBEITERINNEN IN FREIFLIEGENDEN BIENENVÖLKERN , 1987 .