Extraterrestrial nucleobases in the Murchison meteorite

Abstract Carbon-rich meteorites, carbonaceous chondrites, contain many biologically relevant organic molecules and delivered prebiotic material to the young Earth. We present compound-specific carbon isotope data indicating that measured purine and pyrimidine compounds are indigenous components of the Murchison meteorite. Carbon isotope ratios for uracil and xanthine of δ13C = + 44.5‰ and + 37.7‰, respectively, indicate a non-terrestrial origin for these compounds. These new results demonstrate that organic compounds, which are components of the genetic code in modern biochemistry, were already present in the early solar system and may have played a key role in life's origin.

[1]  A search for interstellar pyrimidine , 2003, astro-ph/0308116.

[2]  Alan W. Schwartz,et al.  Uracil in carbonaceous meteorites , 1979, Nature.

[3]  Warren Belisle,et al.  Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth , 2001, Nature.

[4]  P. C. Joshi,et al.  HCN: A plausible source of purines, pyrimidines and amino acids on the primitive earth , 1978, Journal of Molecular Evolution.

[5]  E. Anders,et al.  Origin of organic matter in early solar system—II. Nitrogen compounds , 1968 .

[6]  S. Pizzarello,et al.  Molecular and compound-specific isotopic characterization of monocarboxylic acids in carbonaceous meteorites , 2005 .

[7]  A. Duffield,et al.  Dicarboxylic acids in the Murchison meteorite , 1974, Nature.

[8]  J. Oró,et al.  Production of Guanine from NH4CN Polymerizations , 1999, Journal of Molecular Evolution.

[9]  S. Pizzarello,et al.  The carbon isotopic distribution of Murchison amino acids , 2004 .

[10]  Stanley L. Miller,et al.  An efficient prebiotic synthesis of cytosine and uracil , 1995, Nature.

[11]  K. Harada,et al.  Molecular Distribution of Monocarboxylic Acids in Asuka Carbonaceous Chondrites from Antarctica , 1999, Origins of life and evolution of the biosphere.

[12]  J L Bada,et al.  The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy and dicarboxylic acids. , 1984, Advances in space research : the official journal of the Committee on Space Research.

[13]  S. Miller A production of amino acids under possible primitive earth conditions. , 1953, Science.

[14]  L. Orgel Prebiotic Adenine Revisited: Eutectics and Photochemistry , 2004, Origins of life and evolution of the biosphere.

[15]  H. James Cleaves,et al.  The Cold Origin of Life: B. Implications Based on Pyrimidines and Purines Produced From Frozen Ammonium Cyanide Solutions , 2002, Origins of life and evolution of the biosphere.

[16]  B. Kierdaszuk,et al.  Xanthine, xanthosine and its nucleotides: solution structures of neutral and ionic forms, and relevance to substrate properties in various enzyme systems and metabolic pathways. , 2004, Acta biochimica Polonica.

[17]  Carl Sagan,et al.  Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life , 1992, Nature.

[18]  E. Anders,et al.  Purines and triazines in the Murchison meteorite , 1975 .

[19]  L. Orgel,et al.  Studies in prebiotic synthesis. VI. Synthesis of purine nucleosides. , 1968, Journal of molecular biology.

[20]  Stanley L. Miller,et al.  Energy yields for hydrogen cyanide and formaldehyde syntheses: The hcn and amino acid concentrations in the primitive ocean , 2006, Origins of life and evolution of the biosphere.

[21]  J. Oró,et al.  Synthesis of purines under possible primitive earth conditions. II. Purine intermediates from hydrogen cyanide. , 1962, Archives of biochemistry and biophysics.

[22]  J. Oró,et al.  Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions , 1961, Nature.

[23]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1974, Nature.

[24]  D P Glavin,et al.  Amino acids in the Martian meteorite Nakhla. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Lawless,et al.  Heterocyclic compounds recovered from carbonaceous chondrites , 1973 .

[26]  J. Oró,et al.  Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. , 1961, Archives of biochemistry and biophysics.

[27]  J. Ferris,et al.  HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. , 1984, Tetrahedron.

[28]  S. Pizzarello,et al.  Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxicarboxylic acids of the Murchison meteorite. , 1993, Geochimica et cosmochimica acta.

[29]  A. Schwartz,et al.  Uracil synthesis via HCN oligomerization. , 1982, Origins of life.

[30]  J. Bada,et al.  Extraterrestrial Organic Compounds in Meteorites , 2002 .

[31]  J. Oró,et al.  Synthesis of adenine from ammonium cyanide , 1960 .

[32]  Was adenine the first purine , 1989 .

[33]  G. B. Petersen,et al.  Scanning Tunnelling Microscopy and Molecular Modelling of Xanthine Monolayers Self-assembled at the Solid-Liquid Interface: Relevance to the Origin of Life , 1999, Origins of life and evolution of the biosphere.

[34]  Ryoichi Hayatsu,et al.  Orgueil Meteorite: Organic Nitrogen Contents , 1964, Science.

[35]  A. Lazcano,et al.  The roads to and from the RNA world. , 2003, Journal of theoretical biology.

[36]  Henry J Sun,et al.  An examination of the carbon isotope effects associated with amino acid biosynthesis. , 2006, Astrobiology.

[37]  M. Sephton,et al.  Recognizing life in the Solar System: guidance from meteoritic organic matter , 2005, International Journal of Astrobiology.

[38]  S. Macko,et al.  Carbon isotope composition of individual amino acids in the Murchison meteorite , 1990, Nature.

[39]  Alan W. Schwartz,et al.  Search for purines and pyrimidines in the Murchison meteorite , 1977 .

[40]  P. Ehrenfreund,et al.  The Astrobiology of Nucleobases , 2003 .

[41]  Kensei Kobayashi,et al.  Abiotic Synthesis of Guanine with High-Temperature Plasma , 2000, Origins of life and evolution of the biosphere.

[42]  M. Levy,et al.  The stability of the RNA bases: implications for the origin of life. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Levy,et al.  Concentration by Evaporation and the Prebiotic Synthesis of Cytosine , 2001, Origins of life and evolution of the biosphere.

[44]  L. Orgel,et al.  Studies in prebiotic synthesis. II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. , 1967, Journal of molecular biology.

[45]  Alan W. Schwartz,et al.  Nitrogen-heterocyclic compounds in meteorites: significance and mechanisms of formation , 1981 .

[46]  S. Pizzarello,et al.  Molecular and isotopic analyses of Tagish Lake alkyl dicarboxylic acids , 2002 .

[47]  M. Sephton,et al.  Organic compounds in carbonaceous meteorites. , 2002, Natural product reports.

[48]  J. Kasting Evolution of a habitable planet , 2003 .

[49]  J. Lawless,et al.  Heterocyclic Compounds indigenous to the Murchison Meteorite , 1971, Nature.

[50]  N. Blair,et al.  Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite , 1984, Nature.

[51]  L. Orgel,et al.  Studies in prebiotic synthesis. 3. Synthesis of pyrimidines from cyanoacetylene and cyanate. , 1968, Journal of molecular biology.

[52]  K. Harada,et al.  Search for nucleic acid bases in carbonaceous chondrites from Antarctica. , 1990 .

[53]  K. Kvenvolden,et al.  Organic Matter in Meteorites , 1972 .

[54]  Clifford N. Matthews,et al.  Structural Investigations of Hydrogen Cyanide Polymers: New Insights Using TMAH Thermochemolysis/GC-MS , 1998, Origins of life and evolution of the biosphere.

[55]  J. Kasting,et al.  Earth's early atmosphere , 1987, Science.