Thermal Histories of Chondrules

[1]  A. Rubin,et al.  Secondary melting events in Semarkona chondrules revealed by compositional zoning in low-Ca pyroxene , 2017 .

[2]  G. Libourel,et al.  Olivine dissolution in molten silicates: An experimental study with application to chondrule formation , 2017 .

[3]  G. Libourel,et al.  Magmatic sulfides in the porphyritic chondrules of EH enstatite chondrites , 2016, 1609.08750.

[4]  T. Mccoy,et al.  Widespread evidence for high-temperature formation of pentlandite in chondrites , 2016 .

[5]  A. Johansen,et al.  FORMING CHONDRULES IN IMPACT SPLASHES. II. VOLATILE RETENTION , 2016, 1608.03540.

[6]  G. Libourel,et al.  Early scattering of the solar protoplanetary disk recorded in meteoritic chondrules , 2016, Science Advances.

[7]  S. Weidenschilling,et al.  The effect of multiple particle sizes on cooling rates of chondrules produced in large‐scale shocks in the solar nebula , 2016, 1603.03711.

[8]  J. Beckett,et al.  Correlations and zoning patterns of phosphorus and chromium in olivine from H chondrites and the LL chondrite Semarkona , 2016 .

[9]  G. Libourel,et al.  Relationships between type I and type II chondrules: Implications on chondrule formation processes , 2015 .

[10]  O. Alard,et al.  Trace element geochemistry of ordinary chondrite chondrules: The type I/type II chondrule dichotomy , 2015, 1503.03241.

[11]  Brandon C. Johnson,et al.  Impact jetting as the origin of chondrules , 2015, Nature.

[12]  T. Tenner,et al.  Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation , 2015 .

[13]  D. Lauretta,et al.  Petrography, stable isotope compositions, microRaman spectroscopy, and presolar components of Roberts Massif 04133: A reduced CV3 carbonaceous chondrite , 2014, Meteoritics & planetary science.

[14]  A. Johansen,et al.  FORMING CHONDRULES IN IMPACT SPLASHES. I. RADIATIVE COOLING MODEL , 2014, 1501.05791.

[15]  G. Libourel,et al.  Sulfur and sulfides in chondrules , 2013 .

[16]  L. Grossman,et al.  Vapor saturation of sodium: Key to unlocking the origin of chondrules , 2013 .

[17]  M. Kimura,et al.  Contemporaneous formation of chondrules in distinct oxygen isotope reservoirs , 2013 .

[18]  S. Tachibana,et al.  Interdiffusion of Mg–Fe in olivine at 1,400–1,600 °C and 1 atm total pressure , 2013, Physics and Chemistry of Minerals.

[19]  A. Baronnet,et al.  Dendritic Crystallization: A Single Process for all the Textures of Olivine in Basalts? , 2013 .

[20]  T. Tenner,et al.  Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs , 2013 .

[21]  D. Lauretta,et al.  The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine , 2013 .

[22]  D. Lauretta,et al.  The formation and alteration of the Renazzo‐like carbonaceous chondrites III: Toward understanding the genesis of ferromagnesian chondrules , 2015 .

[23]  A. Ruzicka Chondrule formation by repeated evaporative melting and condensation in collisional debris clouds around planetesimals , 2012 .

[24]  E. Scott,et al.  The origin of chondrules and chondrites: Debris from low‐velocity impacts between molten planetesimals? , 2012 .

[25]  M. Wick,et al.  Formation conditions of plagioclase-bearing type I chondrules in CO chondrites: A study of natural samples and experimental analogs , 2012 .

[26]  O. Alard,et al.  Chondrule trace element geochemistry at the mineral scale , 2012, 1502.01847.

[27]  M. Humayun Chondrule cooling rates inferred from diffusive profiles in metal lumps from the Acfer 097 CR2 chondrite , 2012 .

[28]  R. Hewins,et al.  Chondrules: Precursors and interactions with the nebular gas , 2012 .

[29]  F. Ciesla,et al.  Mineralogical and isotopic constraints on chondrule formation from shock wave thermal histories , 2012 .

[30]  A. Boley,et al.  CHONDRULE FORMATION IN BOW SHOCKS AROUND ECCENTRIC PLANETARY EMBRYOS , 2012, 1204.0739.

[31]  C. Floss,et al.  Agglomeratic olivine (AO) objects and Type II chondrules in ordinary chondrites: Accretion and melting of dust to form ferroan chondrules , 2012 .

[32]  T. Ushikubo,et al.  Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies , 2011 .

[33]  E. Asphaug,et al.  Chondrule formation during planetesimal accretion , 2011 .

[34]  M. Kimura,et al.  Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite , 2011 .

[35]  G. Libourel,et al.  Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites , 2011 .

[36]  S. Tachibana,et al.  High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation , 2010 .

[37]  A. Rubin Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments , 2010 .

[38]  R. Jones Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk , 2010 .

[39]  A. Boss,et al.  The importance of experiments: Constraints on chondrule formation models , 2010 .

[40]  H. C. Connolly,et al.  Compositional evolution of the protoplanetary disk: Oxygen isotopes of type-II chondrules from CR2 chondrites , 2010 .

[41]  D. Lauretta,et al.  High-temperature experimental analogs of primitive meteoritic metal–sulfide–oxide assemblages , 2010 .

[42]  S. Chakraborty Diffusion Coefficients in Olivine, Wadsleyite and Ringwoodite , 2010 .

[43]  S. Desch,et al.  THERMAL HISTORIES OF CHONDRULES IN SOLAR NEBULA SHOCKS , 2010, 1008.2741.

[44]  R. Jones,et al.  Cooling rates of porphyritic olivine chondrules in the Semarkona (LL3.00) ordinary chondrite: A model for diffusional equilibration of olivine during fractional crystallization , 2009 .

[45]  V. Sautter,et al.  Cooling rate of chondrules in ordinary chondrites revisited by a new geospeedometer based on the compensation rule , 2009 .

[46]  C. Floss,et al.  Relict olivine grains, chondrule recycling, and implications for the chemical, thermal, and mechanical processing of nebular materials , 2008 .

[47]  J. Beckett,et al.  Zoning of phosphorus in igneous olivine , 2008 .

[48]  G. Ventura,et al.  Solidification behaviour of natural silicate melts and volcanological implications , 2008 .

[49]  R. Hewins,et al.  Formation conditions of aluminum-rich chondrules , 2007 .

[50]  S. Chakraborty,et al.  Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine , 2007 .

[51]  C. Floss,et al.  Relict olivine, chondrule recycling, and the evolution of nebular oxygen reservoirs , 2007 .

[52]  H. McSween,et al.  Extent of chondrule melting: Evaluation of experimental textures, nominal grain size, and convolution index , 2006 .

[53]  R. Jones,et al.  Identification of relict forsterite grains in forsterite-rich chondrules from the Mokoia CV3 carbonaceous chondrite , 2006 .

[54]  I. Sanders,et al.  A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies , 2006 .

[55]  G. Libourel,et al.  Experimental Constraints on Chondrule Formation , 2005 .

[56]  A. Rubin,et al.  Oxygen-isotopic compositions of low-FeO relicts in high-FeO host chondrules in Acfer 094, a type 3.0 carbonaceous chondrite closely related to CM , 2005 .

[57]  S. Chakraborty,et al.  Experimental determination of the diffusion coefficient for calcium in olivine between 900°C and 1500°C , 2005 .

[58]  K. Righter,et al.  Diffusion of trace elements in FeNi metal: Application to zoned metal grains in chondrites , 2005 .

[59]  S. Chakraborty,et al.  Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation , 2004 .

[60]  A. Rubin,et al.  Oxygen-isotopic compositions of relict and host grains in chondrules in the Yamato 81020 CO3.0 chondrite 1 1 Associate editor: A. N. Krot , 2004 .

[61]  S. Desch,et al.  On the origin of the “kleine Kügelchen” called Chondrules , 2004 .

[62]  Motoo Ito,et al.  Diffusion kinetics of Cr in olivine and 53Mn–53Cr thermochronology of early solar system objects , 2004 .

[63]  A. Tsuchiyama,et al.  Experimental reproduction of classic barred olivine chondrules: open-system behavior of chondrule formation , 2004 .

[64]  G. Trolliard,et al.  TEM investigation of forsterite dendrites , 2004 .

[65]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[66]  A. Rubin,et al.  Ubiquitous Low-FeO Relict Grains in Type II Chondrules and Limited Overgrowths on Phenocrysts Following the Final Melting Event , 2003 .

[67]  Edgar Dutra Zanotto,et al.  Glass-forming ability versus stability of silicate glasses. I. Experimental test , 2003 .

[68]  Edgar Dutra Zanotto,et al.  Glass-forming ability versus stability of silicate glasses. II. Theoretical demonstration , 2003 .

[69]  J. Wasson,et al.  Extremely rapid cooling of a carbonaceous-chondrite chondrule containing very 16O-rich olivine and a 26Mg-excess , 2002 .

[70]  S. Tachibana,et al.  Sulfur Isotope Composition of Putative Primary Troilite in Chondrules , 2002 .

[71]  S. Desch,et al.  A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules , 2002 .

[72]  S. Weinbruch,et al.  A transmission electron microscope study of exsolution and coarsening in iron‐bearing clinopyroxene from synthetic analogues of chondrules , 2001 .

[73]  I. Lyon,et al.  Oxygen isotopes in chondrule olivine and isolated olivine grains from the CO3 chondrite Allan Hills A77307 , 2000 .

[74]  A. Rubin,et al.  Troilite in the chondrules of type-3 ordinary chondrites: implications for chondrule formation , 1999 .

[75]  Brian D. Jones,et al.  The flash melting of chondrules: an experimental investigation into the melting history and physical nature of chondrule precursors , 1998 .

[76]  B. Fegley,et al.  Experimental simulations of sulfide formation in the solar nebula. , 1997, Science.

[77]  G. Layne,et al.  Minor and trace element partitioning between pyroxene and melt in rapidly cooled chondrules , 1997 .

[78]  R. Jones FeO-rich, porphyritic pyroxene chondrules in unequilibrated ordinary chondrites , 1996 .

[79]  B. Fegley,et al.  The Rate of Iron Sulfide Formation in the Solar Nebula , 1996 .

[80]  G. Lofgren,et al.  Experimental studies of group A1 chondrules , 1996 .

[81]  M. Prinz,et al.  Agglomeratic chondrules, chondrule precursors, and incomplete melting. , 1996 .

[82]  S. Weinbruch,et al.  Constraints on the cooling rates of chondrules from the microstructure of clinopyroxene and plagioclase , 1995 .

[83]  H. C. Connolly,et al.  CHONDRULES AS PRODUCTS OF DUST COLLISIONS WITH TOTALLY MOLTEN DROPLETS WITHIN A DUST-RICH NEBULAR ENVIRONMENT : AN EXPERIMENTAL INVESTIGATION , 1995 .

[84]  S. Weinbruch,et al.  Transmission electron microscopy of chondrule minerals in the Allende meteorite: constraints on the thermal and deformational history of granular olivine-pyroxene chondrules , 1995 .

[85]  C. Alexander,et al.  Trace element distributions within ordinary chondrite chondrules: Implications for chondrule formation conditions and precursors , 1994 .

[86]  R. Jones Relict Grains in Chondrules: Evidence for Chondrule Recycling , 1994 .

[87]  G. Lofgren,et al.  A comparison of FeO-rich, porphyritic olivine chondrules in unequilibrated chondrites and experimental analogues , 1993 .

[88]  G. Wasserburg,et al.  An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: equilibrium values and kinetic effects , 1993 .

[89]  J. Papike,et al.  Chondrite thermal histories from Low-CA pyroxene microstructures: Autometamorphism versus prograde metamorphism revisited , 1993 .

[90]  R. Jones On the relationship between isolated and chondrule olivine grains in the carbonaceous chondrite ALHA77307 , 1992 .

[91]  H. C. Connolly,et al.  The influence of bulk composition and dynamic melting conditions on olivine chondrule textures , 1991 .

[92]  G. Lofgren,et al.  Dynamic crystallization study of barred olivine chondrules , 1990 .

[93]  R. Hewins,et al.  Formation conditions of pyroxene-olivine and magnesian olivine chondrules , 1990 .

[94]  Rhian H. Jones,et al.  Petrology and mineralogy of Type II, FeO-rich chondrules in Semarkona (LL3.0) - Origin by closed-system fractional crystallization, with evidence for supercooling , 1990 .

[95]  G. Lofgren Dynamic cyrstallization of chondrule melts of porphyritic olivine composition: Textures experimental and natural , 1989 .

[96]  G. Wasserburg,et al.  Origin of opaque assemblages in C3V meteorites - Implications for nebular and planetary processes , 1989 .

[97]  E. Scott,et al.  Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite , 1989 .

[98]  E. Watson,et al.  Cations in olivine, Part 2: Diffusion in olivine xenocrysts, with applications to petrology and mineral physics , 1988 .

[99]  W. J. Russell,et al.  Dynamic crystallization of chondrule melts of porphyritic and radial pyroxene composition , 1986 .

[100]  L. Taylor,et al.  Olivine/melt Fe/mg Kd's <0.3: Rapid Cooling of Olivine-Rich Chondrules , 1986 .

[101]  N. Morimoto,et al.  A transmission electron microscope study of pyroxene chondrules in equilibrated L-group chondrites , 1985 .

[102]  G. Mckay,et al.  Chemical zoning and homogenization of olivines in ordinary chondrites , 1986 .

[103]  N. Morimoto,et al.  Cooling history of pyroxene chondrules in the Yamato-74191 chondrite (L3)—an electron microscopic study , 1983 .

[104]  N. Morimoto,et al.  Electron microscopy of clinoenstatite from a boninite and a chondrite , 1983 .

[105]  L. Klein,et al.  Conditions of formation of pyroxene excentroradial chondrules , 1982 .

[106]  E. Rambaldi Relict grains in chondrules , 1981, Nature.

[107]  H. Nagahara Evidence for secondary origin of chondrules , 1981, Nature.

[108]  J. R. Ashworth Chondrite thermal histories: Clues from electron microscopy of orthopyroxene , 1980 .

[109]  J. Smyth Experimental Study on the Polymorphism of Enstatite , 1974 .

[110]  F. Albarède,et al.  Kinetic disequilibrium in trace element partitioning between phenocrysts and host lava , 1972 .

[111]  P. Roeder,et al.  Olivine-liquid equilibrium , 1970 .