Object Classification using Local Image Features

Object classification in digital images remains one of the most challenging tasks in computer vision. Advances in the last decade have produced methods to repeatably extract and describe characteristic local features in natural images. In order to apply machine learning techniques in computer vision systems, a representation based on these features is needed. A set of local features is the most popular representation and often used in conjunction with Support Vector Machines for classification problems. In this work, we examine current approaches based on set representations and identify their shortcomings. To overcome these shortcomings, we argue for extending the set representation into a graph representation, encoding more relevant information. Attributes associated with the edges of the graph encode the geometric relationships between individual features by making use of the meta data of each feature, such as the position, scale, orientation and shape of the feature region. At the same time all invariances provided by the original feature extraction method are retained. To validate the novel approach, we use a standard subset of the ETH-80 classification benchmark.

[1]  Jan Ramon,et al.  Expressivity versus efficiency of graph kernels , 2003 .

[2]  David G. Stork,et al.  Pattern Classification , 1973 .

[3]  Tatsuya Akutsu,et al.  Extensions of marginalized graph kernels , 2004, ICML.

[4]  Tony Jebara,et al.  A Kernel Between Sets of Vectors , 2003, ICML.

[5]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[6]  Antoine Bordes,et al.  The Huller: A Simple and Efficient Online SVM , 2005, ECML.

[7]  Horst Bischof,et al.  Fast Approximated SIFT , 2006, ACCV.

[8]  N. Boujemaa,et al.  The intermediate matching kernel for image local features , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[9]  John Shawe-Taylor,et al.  Improving "bag-of-keypoints" image categorisation: Generative Models and PDF-Kernels , 2005 .

[10]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[11]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[12]  Kiyoshi Asai,et al.  Marginalized kernels for biological sequences , 2002, ISMB.

[13]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Trevor Darrell,et al.  Pyramid Match Kernels: Discriminative Classification with Sets of Image Features (version 2) , 2006 .

[15]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[16]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[17]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[18]  Thomas Gärtner,et al.  A survey of kernels for structured data , 2003, SKDD.

[19]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[20]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Pablo Pedregal Introduction to Optimization , 2003 .

[22]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[23]  Martial Hebert,et al.  Incorporating Background Invariance into Feature-Based Object Recognition , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[24]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[25]  J Eichhorn,et al.  Object categorization with SVM: kernels for local features , 2004 .

[26]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[27]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[28]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[29]  L. Guibas,et al.  Finding color and shape patterns in images , 1999 .

[30]  Remco C. Veltkamp,et al.  A Pseudo-Metric for Weighted Point Sets , 2002, ECCV.

[31]  Siwei Lyu,et al.  Mercer kernels for object recognition with local features , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[32]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[33]  Claus Bahlmann,et al.  Learning with Distance Substitution Kernels , 2004, DAGM-Symposium.

[34]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[35]  Robert B. Fisher,et al.  Hypermedia image processing reference , 1996 .

[36]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[38]  Tony Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure , 1997, Image Vis. Comput..

[39]  Jason Weston,et al.  Dealing with large diagonals in kernel matrices , 2003 .

[40]  Nuno Vasconcelos,et al.  A Kullback-Leibler Divergence Based Kernel for SVM Classification in Multimedia Applications , 2003, NIPS.

[41]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[42]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[43]  Hisashi Kashima,et al.  Marginalized Kernels Between Labeled Graphs , 2003, ICML.

[44]  Vapnik,et al.  SVMs for Histogram Based Image Classification , 1999 .

[45]  Matthew A. Brown,et al.  Invariant Features from Interest Point Groups , 2002, BMVC.

[46]  Tony Lindeberg,et al.  Shape-Adapted Smoothing in Estimation of 3-D Depth Cues from Affine Distortions of Local 2-D Brightness Structure , 1994, ECCV.

[47]  Lior Wolf,et al.  Learning over Sets using Kernel Principal Angles , 2003, J. Mach. Learn. Res..

[48]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[49]  Jason Weston,et al.  Multi-Class Support Vector Machines , 1998 .

[50]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[51]  Alexei A. Efros,et al.  Discovering objects and their location in images , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[52]  Koji Tsuda,et al.  Support vector classifier with asymetric kernel function , 1999, The European Symposium on Artificial Neural Networks.

[53]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[54]  Barbara Caputo,et al.  Recognition with local features: the kernel recipe , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[55]  Bernt Schiele,et al.  Local features for object class recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[56]  Jean-Philippe Tarel,et al.  Non-Mercer Kernels for SVM Object Recognition , 2004, BMVC.

[57]  Rangachar Kasturi,et al.  Machine vision , 1995 .