Entanglement control over a quantum CDMA network

The purpose of this paper is to present a method of distributing quantum entanglement over a quantum CDMA network. We use this method to generate two maximally entangled states between two pairs of nodes which share one quantum channel. In this method, we use bright coherent light as the intermediate physical medium for transmitting quantum information. We do not choose the single-photon or weak coherent light sources which is widely-used in the previous work, because the bright coherent light is more easily to be realized in optical experiments. Through this method, quantum information from different pars of users can be transmitted through one channel, which will increase the capacity of the quantum channel.

[1]  Hideo Mabuchi,et al.  Quantum state transfer in a quantum network: A quantum-optical implementation , 1997 .

[2]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[3]  V. Ipatov Spread Spectrum and CDMA: Principles and Applications , 2005 .

[4]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[5]  M. Tsang Cavity quantum electro-optics , 2010, 1003.0116.

[6]  P. Horodecki,et al.  Quantum channel capacities: Multiparty communication , 2006 .

[7]  Graeme Smith,et al.  Quantum Communication with Zero-Capacity Channels , 2008, Science.

[8]  Michel Devoret,et al.  Superconducting quantum bits , 2005 .

[9]  宅間 宏,et al.  Amnon Yariv: Quantum Electronics, John Wiley and Sons, Inc., New York, 1967, 478頁, 16×24cm, 5,980円. , 1968 .

[10]  A. Bloom Quantum Electronics , 1972, Nature.

[11]  Kae Nemoto,et al.  Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light , 2006 .

[12]  D. Matsukevich,et al.  Quantum State Transfer Between Matter and Light , 1999, Science.

[13]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[14]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[15]  Christopher Monroe,et al.  Quantum Networks with Trapped Ions , 2007 .

[16]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[17]  C. Monroe,et al.  Quantum information processing with atoms and photons , 2002, Nature.

[18]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[19]  Pawel Horodecki,et al.  Purely quantum superadditivity of classical capacities of quantum multiple access channels. , 2009, Physical review letters.

[20]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[21]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[22]  M. Lukin,et al.  Storage of light in atomic vapor. , 2000, Physical Review Letters.

[23]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[24]  Luming Duan,et al.  Colloquium: Quantum networks with trapped ions , 2010 .

[25]  Raphael Rom,et al.  Multiple Access Protocols: Performance and Analysis , 1990, SIGMETRICS Perform. Evaluation Rev..

[26]  J. Raimond,et al.  Quantum Memory with a Single Photon in a Cavity , 1997 .

[27]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[28]  Franco Nori,et al.  Quantum internet using code division multiple access , 2012, Scientific Reports.

[29]  M. Lukin Colloquium: Trapping and manipulating photon states in atomic ensembles , 2003 .

[30]  Raphael Rom,et al.  Multiple Access Protocols: Performance and Analysis , 1990, SIGMETRICS Perform. Evaluation Rev..

[31]  Andrea Bergmann Principles Of Electronic Communication Systems , 2016 .