ElectroRing: Subtle Pinch and Touch Detection with a Ring

We present ElectroRing, a wearable ring-based input device that reliably detects both onset and release of a subtle finger pinch, and more generally, contact of the fingertip with the user’s skin. ElectroRing addresses a common problem in ubiquitous touch interfaces, where subtle touch gestures with little movement or force are not detected by a wearable camera or IMU. ElectroRing’s active electrical sensing approach provides a step-function-like change in the raw signal, for both touch and release events, which can be easily detected using only basic signal processing techniques. Notably, ElectroRing requires no second point of instrumentation, but only the ring itself, which sets it apart from existing electrical touch detection methods. We built three demo applications to highlight the effectiveness of our approach when combined with a simple IMU-based 2D tracking system.

[1]  Kai Zhang,et al.  The Simulation Method of the Galvanic Coupling Intrabody Communication With Different Signal Transmission Paths , 2011, IEEE Transactions on Instrumentation and Measurement.

[2]  Sang Ho Yoon,et al.  iSoft: A Customizable Soft Sensor with Real-time Continuous Contact and Stretching Sensing , 2017, UIST.

[3]  Virag Varga Reinventing Touch with Body Channel Communication - System Design from Electric Fields To Mixed Reality , 2019 .

[4]  Yasuhito Suenaga,et al.  “FingeRing”: a full-time wearable interface , 1994, CHI '94.

[5]  Adiyan Mujibiya,et al.  The sound of touch: on-body touch and gesture sensing based on transdermal ultrasound propagation , 2013, ITS.

[6]  Xiaojun Bi,et al.  TipText: Eyes-Free Text Entry on a Fingertip Keyboard , 2019, UIST.

[7]  Tong Lu,et al.  iSkin: Flexible, Stretchable and Visually Customizable On-Body Touch Sensors for Mobile Computing , 2015, CHI.

[8]  Daniel Vogel,et al.  RotoSwype: Word-Gesture Typing using a Ring , 2019, CHI.

[9]  Christian Holz,et al.  DuoSkin: rapidly prototyping on-skin user interfaces using skin-friendly materials , 2016, SEMWEB.

[10]  Wen-Huang Cheng,et al.  FingerPad: private and subtle interaction using fingertips , 2013, UIST.

[11]  William Buxton,et al.  A three-state model of graphical input , 1990, INTERACT.

[12]  Xing-Dong Yang,et al.  Magic finger: always-available input through finger instrumentation , 2012, UIST.

[13]  Denys J. C. Matthies,et al.  FingerReader2.0 , 2018, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[14]  Gregory D. Abowd,et al.  TapSkin: Recognizing On-Skin Input for Smartwatches , 2016, ISS.

[15]  Joseph A. Paradiso,et al.  Passive acoustic sensing for tracking knocks atop large interactive displays , 2002, Proceedings of IEEE Sensors.

[16]  Desney S. Tan,et al.  Skinput: appropriating the body as an input surface , 2010, CHI.

[17]  Darren Leigh,et al.  DT controls: adding identity to physical interfaces , 2005, UIST '05.

[18]  Ken Hinckley,et al.  LightRing: always-available 2D input on any surface , 2014, UIST.

[19]  Robert Xiao,et al.  MRTouch: Adding Touch Input to Head-Mounted Mixed Reality , 2018, IEEE Transactions on Visualization and Computer Graphics.

[20]  Thomas R. Gross,et al.  Designing Groundless Body Channel Communication Systems: Performance and Implications , 2018, UIST.

[21]  Suranga Nanayakkara,et al.  SmartFinger: connecting devices, objects and people seamlessly , 2013, OZCHI.

[22]  I. Poupyrev,et al.  Touché: touch and gesture sensing for the real world , 2012, UbiComp.

[23]  Kenneth C. Smith,et al.  A multi-touch three dimensional touch-sensitive tablet , 1985, CHI '85.

[24]  Shwetak N. Patel,et al.  Finexus: Tracking Precise Motions of Multiple Fingertips Using Magnetic Sensing , 2016, CHI.

[25]  Sean White,et al.  Nenya: subtle and eyes-free mobile input with a magnetically-tracked finger ring , 2011, CHI.

[26]  High Precision Multi-touch Sensing on Surfaces using Overhead Cameras , 2007, Second Annual IEEE International Workshop on Horizontal Interactive Human-Computer Systems (TABLETOP'07).

[27]  Darren Leigh,et al.  DiamondTouch: a multi-user touch technology , 2001, UIST '01.

[28]  Hrvoje Benko,et al.  Combining multiple depth cameras and projectors for interactions on, above and between surfaces , 2010, UIST.

[29]  Shwetak N. Patel,et al.  AuraRing , 2019, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[30]  Desney S. Tan,et al.  FingerIO: Using Active Sonar for Fine-Grained Finger Tracking , 2016, CHI.

[31]  Chris Harrison,et al.  OmniTouch: wearable multitouch interaction everywhere , 2011, UIST.

[32]  Shwetak N. Patel,et al.  Carpacio: Repurposing Capacitive Sensors to Distinguish Driver and Passenger Touches on In-Vehicle Screens , 2017, UIST.

[33]  Patrick Olivier,et al.  Digits: freehand 3D interactions anywhere using a wrist-worn gloveless sensor , 2012, UIST.

[34]  Christian Holz,et al.  Biometric Touch Sensing: Seamlessly Augmenting Each Touch with Continuous Authentication , 2015, UIST.

[35]  Daniel Vogel,et al.  Tip-Tap: Battery-free Discrete 2D Fingertip Input , 2019, UIST.

[36]  Suranga Nanayakkara,et al.  FingerReader: A Wearable Device to Explore Printed Text on the Go , 2015, CHI.

[37]  Jun Rekimoto,et al.  HoloWall: designing a finger, hand, body, and object sensitive wall , 1997, UIST '97.

[38]  John Paul Shen,et al.  SurfaceVibe: Vibration-Based Tap & Swipe Tracking on Ubiquitous Surfaces , 2017, 2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN).

[39]  Gierad Laput,et al.  Electrick: Low-Cost Touch Sensing Using Electric Field Tomography , 2017, CHI.

[40]  Jürgen Steimle,et al.  Multi-Touch Skin: A Thin and Flexible Multi-Touch Sensor for On-Skin Input , 2018, CHI.

[41]  Matthew S. Reynolds,et al.  Finding Common Ground: A Survey of Capacitive Sensing in Human-Computer Interaction , 2017, CHI.

[42]  Yang Zhang,et al.  Pulp Nonfiction: Low-Cost Touch Tracking for Paper , 2018, CHI.

[43]  Yang Zhang,et al.  Wall++: Room-Scale Interactive and Context-Aware Sensing , 2018, CHI.

[44]  Yang Zhang,et al.  ActiTouch: Robust Touch Detection for On-Skin AR/VR Interfaces , 2019, UIST.

[45]  Kent Lyons,et al.  2D input for virtual reality enclosures with magnetic field sensing , 2016, SEMWEB.

[46]  Ivan Poupyrev,et al.  Project Jacquard: Interactive Digital Textiles at Scale , 2016, CHI.

[47]  Gierad Laput,et al.  SkinTrack: Using the Body as an Electrical Waveguide for Continuous Finger Tracking on the Skin , 2016, CHI.

[48]  Li-Wei Chan,et al.  CyclopsRing: Enabling Whole-Hand and Context-Aware Interactions Through a Fisheye Ring , 2015, UIST.

[49]  R GrossThomas,et al.  Enabling Interactive Infrastructure with Body Channel Communication , 2018 .

[50]  Shuchang Xu,et al.  Accurate and Low-Latency Sensing of Touch Contact on Any Surface with Finger-Worn IMU Sensor , 2019, UIST.

[51]  Yoshinobu Tonomura,et al.  “Body coupled FingerRing”: wireless wearable keyboard , 1997, CHI.

[52]  Daniel Vogel,et al.  WRIST: Watch-Ring Interaction and Sensing Technique for Wrist Gestures and Macro-Micro Pointing , 2019, MobileHCI.

[53]  Bongwon Suh,et al.  Exploring the Front Touch Interface for Virtual Reality Headsets , 2016, CHI Extended Abstracts.

[54]  Thomas R. Gross,et al.  Enabling Interactive Infrastructure with Body Channel Communication , 2017, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[55]  Claudio S. Pinhanez The Everywhere Displays Projector: A Device to Create Ubiquitous Graphical Interfaces , 2001, UbiComp.