Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage

In patients with retinal ganglion cell diseases, recent diffusion tensor imaging (DTI) studies have revealed structural abnormalities in visual white matter tracts such as the optic tract, and optic radiation. However, the microstructural origin of these diffusivity changes is unknown as DTI metrics involve multiple biological factors and do not correlate directly with specific microstructural properties. In contrast, recent quantitative T1 (qT1) mapping methods provide tissue property measurements relatively specific to myelin volume fractions in white matter. This study aims to improve our understanding of microstructural changes in visual white matter tracts following retinal ganglion cell damage in Leber's hereditary optic neuropathy (LHON) patients by combining DTI and qT1 measurements. We collected these measurements from seven LHON patients and twenty age-matched control subjects. For all individuals, we identified the optic tract and the optic radiation using probabilistic tractography, and evaluated diffusivity and qT1 profiles along them. Both diffusivity and qT1 measurements in the optic tract differed significantly between LHON patients and controls. In the optic radiation, these changes were observed in diffusivity but were not evident in qT1 measurements. This suggests that myelin loss may not explain trans-synaptic diffusivity changes in the optic radiation as a consequence of retinal ganglion cell disease.

[1]  Kathryn L. West,et al.  Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex , 2017, NeuroImage.

[2]  Shu-Wei Sun,et al.  Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia , 2003, NeuroImage.

[3]  Brian A. Wandell,et al.  Diagnosing the Neural Circuitry of Reading , 2017, Neuron.

[4]  Olga Ciccarelli,et al.  Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis. , 2016, Brain : a journal of neurology.

[5]  Yupeng Wu,et al.  Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection , 2016, Brain Research.

[6]  R. Nuzzi,et al.  Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review , 2018, Front. Neurosci..

[7]  P. Chinnery,et al.  A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy , 2011, Brain : a journal of neurology.

[8]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[9]  Massimo Filippi,et al.  Wallerian and trans-synaptic degeneration contribute to optic radiation damage in multiple sclerosis: a diffusion tensor MRI study , 2013, Multiple sclerosis.

[10]  Josef Parvizi,et al.  Quantifying the local tissue volume and composition in individual brains with MRI , 2013, Nature Medicine.

[11]  Derek K. Jones,et al.  Gleaning multicomponent T1 and T2 information from steady‐state imaging data , 2008, Magnetic resonance in medicine.

[12]  Heidi Johansen-Berg,et al.  The role of diffusion MRI in neuroscience , 2017, bioRxiv.

[13]  F. Cornelissen,et al.  Morphometric analyses of the visual pathways in macular degeneration , 2014, Cortex.

[14]  Franco Pestilli,et al.  White matter consequences of retinal receptor and ganglion cell damage. , 2014, Investigative ophthalmology & visual science.

[15]  B. Wandell,et al.  Lifespan maturation and degeneration of human brain white matter , 2014, Nature Communications.

[16]  M. Kiyosawa,et al.  Alteration of the optic radiations using diffusion-tensor MRI in patients with retinitis pigmentosa , 2015, British Journal of Ophthalmology.

[17]  Trevor Hastie,et al.  Evaluating quantitative proton‐density‐mapping methods , 2016, Human brain mapping.

[18]  Franco Pestilli,et al.  Age-related macular degeneration affects the optic radiation white matter projecting to locations of retinal damage , 2018, Brain Structure and Function.

[19]  Derek K. Jones,et al.  The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study † , 2004, Magnetic resonance in medicine.

[20]  D. Manners,et al.  Secondary Post-Geniculate Involvement in Leber’s Hereditary Optic Neuropathy , 2012, PloS one.

[21]  F. Dick,et al.  Whole-Brain In-vivo Measurements of the Axonal G-Ratio in a Group of 37 Healthy Volunteers , 2015, Front. Neurosci..

[22]  B. Wandell,et al.  The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements , 2014, Proceedings of the National Academy of Sciences.

[23]  P. Thompson,et al.  Diffusion imaging, white matter, and psychopathology. , 2011, Annual review of clinical psychology.

[24]  M. Wakakura,et al.  Nationwide epidemiological survey of Leber hereditary optic neuropathy in Japan , 2017, Journal of epidemiology.

[25]  Chun Yuan,et al.  Cross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brain , 2004, NeuroImage.

[26]  F. Meire,et al.  Mitochondrial mutations of Leber's hereditary optic neuropathy: a risk factor for multiple sclerosis , 2000, Journal of Neurology.

[27]  A. Hofman,et al.  Prevalence and causes of visual field loss in the elderly and associations with impairment in daily functioning: the Rotterdam Study. , 2001, Archives of ophthalmology.

[28]  Franco Pestilli,et al.  Occipital white matter tracts in human and macaque , 2016, bioRxiv.

[29]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[30]  David J. Calkins,et al.  Glial coverage in the optic nerve expands in proportion to optic axon loss in chronic mouse glaucoma. , 2016, Experimental eye research.

[31]  John S Werner,et al.  Compromised Integrity of Central Visual Pathways in Patients With Macular Degeneration. , 2017, Investigative ophthalmology & visual science.

[32]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[33]  C. Lebel,et al.  Diffusion tensor imaging of white matter tract evolution over the lifespan , 2012, NeuroImage.

[34]  Franco Pestilli,et al.  Comparative neuroanatomy: integrating classic and modern methods to understand association fibers connecting dorsal and ventral visual cortex , 2019, Neuroscience Research.

[35]  S. Berman,et al.  Modeling conduction delays in the corpus callosum using MRI-measured g-ratio , 2019, NeuroImage.

[36]  Jonathan Winawer,et al.  A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex. , 2016, Cerebral cortex.

[37]  Huiguang He,et al.  Structural brain alterations in primary open angle glaucoma: a 3T MRI study , 2016, Scientific Reports.

[38]  Ione Fine,et al.  The visual white matter: The application of diffusion MRI and fiber tractography to vision science , 2016 .

[39]  Nikolaus Weiskopf,et al.  Using high-resolution quantitative mapping of R1 as an index of cortical myelination , 2014, NeuroImage.

[40]  R M Henkelman,et al.  Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. , 1994, Radiology.

[41]  Michael A. Barnett,et al.  Microstructural proliferation in human cortex is coupled with the development of face processing , 2017, Science.

[42]  B. Wandell,et al.  Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification , 2012, PloS one.

[43]  D. Friedman,et al.  Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe in 2015: magnitude, temporal trends and projections , 2018, British Journal of Ophthalmology.

[44]  P. Chinnery,et al.  Clinical features of MS associated with Leber hereditary optic neuropathy mtDNA mutations , 2013, Neurology.

[45]  K. Whittingstall,et al.  Active delineation of Meyer's loop using oriented priors through MAGNEtic tractography (MAGNET) , 2017, Human brain mapping.

[46]  H. Johansen-Berg,et al.  White Matter Plasticity in the Adult Brain , 2017, Neuron.

[47]  P. Cortelli,et al.  Leber's hereditary optic neuropathy , 1997, Neurology.

[48]  Julien Cohen-Adad,et al.  In vivo histology of the myelin g-ratio with magnetic resonance imaging , 2015, NeuroImage.

[49]  K. Huoponen,et al.  Ophthalmologic findings in Leber hereditary optic neuropathy, with special reference to mtDNA mutations. , 1996, Ophthalmology.

[50]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[51]  N. Gupta,et al.  Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex , 2006, British Journal of Ophthalmology.

[52]  A. Parry-Jones,et al.  Leber’s hereditary optic neuropathy associated with multiple sclerosis: Harding’s syndrome , 2008, Practical Neurology.

[53]  Robert Turner,et al.  Myelin and iron concentration in the human brain: A quantitative study of MRI contrast , 2014, NeuroImage.

[54]  Catherine Lebel,et al.  Six is enough? Comparison of diffusion parameters measured using six or more diffusion‐encoding gradient directions with deterministic tractography , 2012, Magnetic resonance in medicine.

[55]  Derek K. Jones,et al.  Meyer's loop tractography for image-guided surgery depends on imaging protocol and hardware , 2018, NeuroImage: Clinical.

[56]  A. MacKay,et al.  In vivo visualization of myelin water in brain by magnetic resonance , 1994, Magnetic resonance in medicine.

[57]  F. Cornelissen,et al.  Structural brain MRI studies in eye diseases: are they clinically relevant? A review of current findings , 2016, Acta ophthalmologica.

[58]  Brian A. Wandell,et al.  Anatomy of the visual word form area: Adjacent cortical circuits and long-range white matter connections , 2013, Brain and Language.

[59]  G. B. Pike,et al.  MRI‐based myelin water imaging: A technical review , 2015, Magnetic resonance in medicine.

[60]  Bas Rokers,et al.  Eye Movements , Strabismus , Amblyopia and Neuro-Ophthalmology Retinothalamic White Matter Abnormalities in Amblyopia , 2018 .

[61]  N. Lundbom,et al.  Relaxometry of brain: Why white matter appears bright in MRI , 1990, Magnetic resonance in medicine.

[62]  S. Resnikoff,et al.  A Simple Method for Estimating the Economic Cost of Productivity Loss Due to Blindness and Moderate to Severe Visual Impairment , 2015, Ophthalmic epidemiology.

[63]  P. Basser,et al.  Comprehensive approach for correction of motion and distortion in diffusion‐weighted MRI , 2004, Magnetic resonance in medicine.

[64]  N. Newman,et al.  Hereditary optic neuropathies , 2004, Eye.

[65]  Omar H. Butt,et al.  The Retinotopic Organization of Striate Cortex Is Well Predicted by Surface Topology , 2012, Current Biology.

[66]  David H. Brainard,et al.  Correction of Distortion in Flattened Representations of the Cortical Surface Allows Prediction of V1-V3 Functional Organization from Anatomy , 2014, PLoS Comput. Biol..

[67]  Julien Cohen-Adad,et al.  g-Ratio weighted imaging of the human spinal cord in vivo , 2017, NeuroImage.

[68]  Anthony J. Sherbondy,et al.  Identifying the human optic radiation using diffusion imaging and fiber tractography. , 2008, Journal of vision.

[69]  A. Blight,et al.  Myelination in the Absence of Galactocerebroside and Sulfatide: Normal Structure with Abnormal Function and Regional Instability , 1996, Cell.

[70]  D. Mackey,et al.  Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy. , 1996, American journal of human genetics.

[71]  H. Taylor,et al.  Vision impairment predicts 5 year mortality , 2001, The British journal of ophthalmology.

[72]  D. Manners,et al.  Diffusion Tensor Imaging Mapping of Brain White Matter Pathology in Mitochondrial Optic Neuropathies , 2015, American Journal of Neuroradiology.

[73]  A. Lutti,et al.  Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology. , 2015, Current opinion in neurology.

[74]  S. Graham,et al.  Demyelination precedes axonal loss in the transneuronal spread of human neurodegenerative disease , 2019, Brain : a journal of neurology.

[75]  T. Duong,et al.  MRI Study of the Posterior Visual Pathways in Primary Open Angle Glaucoma , 2016, Journal of glaucoma.

[76]  B. Wandell,et al.  Cortical Maps and White Matter Tracts following Long Period of Visual Deprivation and Retinal Image Restoration , 2010, Neuron.

[77]  A. Norcia,et al.  The Structural Properties of Major White Matter Tracts in Strabismic Amblyopia. , 2015, Investigative ophthalmology & visual science.

[78]  E. Ullian,et al.  Dynamic Modulation of Myelination in Response to Visual Stimuli Alters Optic Nerve Conduction Velocity , 2016, The Journal of Neuroscience.

[79]  F. Dick,et al.  Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy† , 2012, Cerebral cortex.

[80]  Anthony J. Sherbondy,et al.  ConTrack: finding the most likely pathways between brain regions using diffusion tractography. , 2008, Journal of vision.

[81]  Alfredo A. Sadun,et al.  Leber’s Hereditary Optic Neuropathy , 2011, Current treatment options in neurology.

[82]  Giacinto Bagetta,et al.  Brain involvement in glaucoma: advanced neuroimaging for understanding and monitoring a new target for therapy. , 2013, Current opinion in pharmacology.

[83]  Max C. Keuken,et al.  Towards a mechanistic understanding of the human subcortex , 2016, Nature Reviews Neuroscience.

[84]  F. Cornelissen,et al.  Surface-Based Analyses of Anatomical Properties of the Visual Cortex in Macular Degeneration , 2016, PloS one.

[85]  M. Sofroniew,et al.  Reactive Gliosis and the Multicellular Response to CNS Damage and Disease , 2014, Neuron.

[86]  T. Benzinger,et al.  Diffusion tensor MRI as a biomarker in axonal and myelin damage. , 2013, Imaging in medicine.

[87]  S. Graham,et al.  A topographical relationship between visual field defects and optic radiation changes in glaucoma. , 2014, Investigative ophthalmology & visual science.

[88]  S. A. Wijtenburg,et al.  Reproducibility of tract‐based white matter microstructural measures using the ENIGMA‐DTI protocol , 2017, Brain and behavior.

[89]  F. Goldby A NOTE ON TRANSNEURONAL ATROPHY IN THE HUMAN LATERAL GENICULATE BODY , 1957, Journal of neurology, neurosurgery, and psychiatry.

[90]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[91]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[92]  M. Kiyosawa,et al.  Positive correlation between the degree of visual field defect and optic radiation damage in glaucoma patients , 2013, Japanese Journal of Ophthalmology.

[93]  Brian A. Wandell,et al.  The visual white matter: The application of diffusion MRI and fiber tractography to vision science , 2016, bioRxiv.

[94]  J. Veraart,et al.  Degeneracy in model parameter estimation for multi‐compartmental diffusion in neuronal tissue , 2016, NMR in biomedicine.

[95]  Anthony M. Norcia,et al.  Tractography optimization using quantitative T1 mapping in the human optic radiation , 2018, NeuroImage.

[96]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[97]  M. Filippi,et al.  Patterns of white matter diffusivity abnormalities in Leber’s hereditary optic neuropathy: a tract-based spatial statistics study , 2012, Journal of Neurology.

[98]  Franco Pestilli,et al.  Altered white matter in early visual pathways of humans with amblyopia , 2015, Vision Research.

[99]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[100]  J. Gore,et al.  The microstructural correlates of T1 in white matter , 2016, Magnetic resonance in medicine.

[101]  I Levesque,et al.  Regional variations in normal brain shown by quantitative magnetization transfer imaging , 2004, Magnetic resonance in medicine.