Design of ultrafast all-optical pulsed-mode 2 $$\times $$× 2 crossbar switch using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer

An all-optical 2 $$\times $$× 2 crossbar switch capable of pulsed-mode operation and of handling ultrafast information is proposed and analytically designed. For this purpose, the quantum-dot semiconductor optical amplifier (QD-SOA)-based Mach–Zehnder interferometer (MZI) is employed as two-input two-output switching unit, in which the direction where the input data are forwarded is controlled by a single, purely lightwave excitation of alternating binary content. The performance of the crossbar switch under bitwise pulsed-mode of operation is thoroughly investigated and assessed by means of numerical simulation to find the range of permissible values of critical operating parameters. These parameters are distinguished depending on whether they affect the saturation level of the QD-SOA that is influenced by the optical control signal or translate the associated gain changes into differential phase shift between the MZI arms. This approach highlights the prominent role of the QD-SOA linewidth enhancement factor, which must be chosen to be sufficiently high so that the required switching procedure takes place properly. With this necessary condition, which holds in real QD-SOA devices, it can be determined how the rest parameters must be selected and combined so that the defined performance metrics become acceptable. Finally, an efficient technique for balancing the local extinction ratios in the switched and in the non-switched states of the crossbar configuration is applied in order to optimize its performance and favor its practical use. The guidelines derived for the design of the scheme are technologically satisfiable and can be useful for its implementation and exploitation in diverse switching applications.

[1]  Nikos Pleros,et al.  Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching , 2007 .

[2]  Kyriakos E. Zoiros,et al.  On the design of semiconductor optical amplifier-assisted Sagnac interferometer with full data dual output switching capability , 2011 .

[3]  Tanay Chattopadhyay,et al.  Design of ring resonator based all optical switch for logic and arithmetic operations – A theoretical study , 2013 .

[4]  O. Zouraraki,et al.  2$\,\times\,$2 Exchange/Bypass Switch Using 0.8 m of Highly Nonlinear Bismuth Oxide Fiber , 2007, IEEE Photonics Technology Letters.

[5]  Kevin A. Williams,et al.  Integrated 2 X 2 quantum dot optical crossbar switch in 1.55 μm wavelength range , 2009 .

[6]  K. Zoiros,et al.  On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer , 2012 .

[7]  Huug de Waardt,et al.  1x2 optical packet switch using all-optical header processing , 2001 .

[8]  Biswanath Mukherjee,et al.  All-optical packet switching for metropolitan area networks: opportunities and challenges , 2001, IEEE Commun. Mag..

[9]  Jitendra Nath Roy,et al.  Design of all-optical time-division multiplexing scheme with the help of microring resonator , 2014 .

[10]  A. Wonfor,et al.  Uncooled 2x2 quantum dot semiconductor optical amplifier based switch , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[11]  Kyriakos E. Zoiros,et al.  All-Optical XOR Gate Using Single Quantum-Dot SOA and Optical Filter , 2013, Journal of Lightwave Technology.

[12]  Emmanouel Varvarigos The "packing" and the "scheduling packet" switch architectures for almost all-optical lossless networks , 1998 .

[13]  Xiaohua Ma,et al.  Optical switching technology comparison: optical MEMS vs. other technologies , 2003, IEEE Commun. Mag..

[14]  K. Akahane,et al.  Numerical Analysis of Ultrafast Performances of All-Optical Logic-Gate Devices Integrated With InAs QD-SOA and Ring Resonators , 2013, IEEE Journal of Quantum Electronics.

[15]  P. Dumon,et al.  Silicon microring resonators , 2012 .

[16]  S. J. B. Yoo,et al.  Nonlinear Optical Signal Processing in Optical Packet Switching Systems , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  Ivan B. Djordjevic,et al.  A survey on recent advances in optical communications , 2014, Comput. Electr. Eng..

[18]  F. MacWilliams,et al.  Pseudo-random sequences and arrays , 1976, Proceedings of the IEEE.

[19]  G. Theophilopoulos,et al.  Optically addressable 2 x 2 exchange/bypass packet switch , 2002, IEEE Photonics Technology Letters.

[20]  J D LeGrange,et al.  Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit. , 2014, Optics express.

[21]  H. Avramopoulos,et al.  10-Gb/s all-optical half-adder with interferometric SOA gates , 2004, IEEE Photonics Technology Letters.

[22]  Bo Zhang,et al.  Coupled-ring-resonator-based silicon modulator for enhanced performance. , 2008, Optics express.

[23]  Keith J. Blow,et al.  Travelling-wave model of semiconductor optical amplifier based non-linear loop mirror , 2003 .

[24]  Martin Maier,et al.  Optical Switching Networks , 2008 .

[25]  John Houlihan,et al.  Electron and hole dynamics of InAs∕GaAs quantum dot semiconductor optical amplifiers , 2007 .

[26]  Kyriakos E. Zoiros,et al.  All-optical D flip-flop using single quantum-dot semiconductor optical amplifier assisted Mach–Zehnder interferometer , 2015 .

[27]  A Huang,et al.  Sagnac fiber logic gates and their possible applications: a system perspective. , 1994, Applied optics.

[28]  Lowell L. Scheiner,et al.  Fiber-Optic Communications Technology , 2000 .

[29]  Jitendra Nath Roy Mach-Zehnder interferometer-based tree architecture for all-optical logic and arithmetic operations , 2009 .

[30]  N. Harris,et al.  Efficient, compact and low loss thermo-optic phase shifter in silicon. , 2014, Optics express.

[31]  W. Pieper,et al.  SLALOM: semiconductor laser amplifier in a loop mirror , 1995 .

[32]  Hiroshi Ishikawa,et al.  Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb s-1 and a new scheme of 3R regenerators , 2002 .

[33]  A. Bogoni,et al.  All-Optical 2$\,\times\,$ 2 Switch Based on Kerr Effect in Highly Nonlinear Fiber for Ultrafast Applications , 2006, IEEE Photonics Technology Letters.

[34]  Kumar N. Sivarajan,et al.  Optical Networks: A Practical Perspective , 1998 .

[35]  Nicola Calabretta,et al.  Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system. , 2014, Optics express.

[36]  Kevin A. Williams,et al.  Scalable Quantum Dot Amplifier Based Optical Switch Matrix , 2008 .

[37]  Kyriakos E. Zoiros,et al.  Performance investigation of all-optical clock recovery circuit based on Fabry-Pérot filter and semiconductor optical amplifier assisted Sagnac switch , 2007 .

[38]  R. Tucker,et al.  Switching Energy and Device Size Limits on Digital Photonic Signal Processing Technologies , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  T. W. Berg,et al.  Saturation and noise properties of quantum-dot optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[40]  Y. Arakawa,et al.  An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots , 2005, IEEE Photonics Technology Letters.

[41]  Yu Zhang,et al.  Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited] , 2015 .

[42]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[43]  M. Ekawa,et al.  Quantum-Dot Semiconductor Optical Amplifiers With Polarization-Independent Gains in 1.5-$\mu$ m Wavelength Bands , 2008, IEEE Photonics Technology Letters.

[44]  P. Green Fiber Optic Networks , 1992 .

[45]  G. Papadimitriou,et al.  Optical switching: switch fabrics, techniques, and architectures , 2003 .

[46]  H. Jäckel,et al.  All-optical switching at multi-100-Gb/s data rates with Mach-Zehnder interferometer switches , 2002 .

[47]  A Bogoni,et al.  All-Optical Low-Power 2 $\,\times\,$2 Cross/Bar Switch With a Single Semiconductor Optical Amplifier , 2010, IEEE Photonics Technology Letters.

[48]  T. Chattopadhyay All-optical programmable Boolean logic unit using semiconductor optical amplifiers on the Mach–Zehnder interferometer arms switch , 2011 .

[49]  A. Ghanbari,et al.  All-optical switching using microring resonators including Quantum-Dots , 2010, 2010 International Symposium on Optomechatronic Technologies.

[50]  K L Hall,et al.  Interferometric all-optical switches for ultrafast signal processing. , 1998, Applied optics.

[51]  Kyriakos E. Zoiros,et al.  ON THE FEASIBILITY OF 320 Gb/s ALL-OPTICAL AND GATE USING QUANTUM-DOT SEMICONDUCTOR OP- TICAL AMPLIFIER-BASED MACH-ZEHNDER INTER- FEROMETER , 2013 .

[52]  Tanay Chattopadhyay,et al.  All-optical cross-bar network architecture using TOAD based interferometric switch and designing of reconfigurable logic unit , 2011 .

[53]  Jitendra Nath Roy,et al.  Micro-ring resonator based all-optical reconfigurable logic operations , 2014 .

[54]  M. Begbie,et al.  A Design Approach to 2-D Electrostatic Torsional Micromirrors With Z-Axis Displacement Compensation , 2006, IEEE Photonics Technology Letters.

[55]  Guifang Li,et al.  Comments on “Theoretical Analysis of Gain-Recovery Time and Chirp in QD-SOA” , 2006 .

[56]  M. Mojahedi,et al.  Time-Resolved Linewidth Enhancement Factors in Quantum Dot and Higher-Dimensional Semiconductor Amplifiers Operating at 1.55 $\mu{\hbox{m}}$ , 2008, Journal of Lightwave Technology.

[57]  G. Guekos,et al.  Recovery dynamics of cross-modulated beam phase in semiconductor amplifiers and applications to all-optical signal processing , 2001 .

[58]  Juerg Leuthold,et al.  All-optical 2/spl times/2 switches with 20 dB extinction ratios , 1996 .

[59]  K. Zoiros,et al.  On the feasibility of ultrafast all-optical NAND gate using single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer , 2012 .

[60]  Juerg Leuthold,et al.  All-optical space switches with gain and principally ideal extinction ratios , 1998 .