A review of dispersion control charts for multivariate individual observations

A multivariate control chart is designed to monitor process parameters of multiple correlated quality characteristics. Often data on multivariate processes are collected as individual observations, i.e. as vectors one at the time. Various control charts have been proposed in the literature to monitor the covariance matrix of a process when individual observations are collected. In this study, we review this literature; we find 30 relevant articles from the period 1987-2019. We group the articles into five categories. We observe that less research has been done on CUSUM, high-dimensional and non-parametric type control charts for monitoring the process covariance matrix. We describe each proposed method, state their advantages, and limitations. Finally, we give suggestions for future research.

[1]  Jian Zhang,et al.  MULTIVARIATE CUMULATIVE SUM CONTROL CHARTS BASED ON PROJECTION PURSUIT , 2001 .

[2]  L. Shu,et al.  A distribution‐free control chart for monitoring high‐dimensional processes based on interpoint distances , 2018, Naval Research Logistics (NRL).

[3]  Bo Li,et al.  Simultaneous monitoring of process mean vector and covariance matrix via penalized likelihood estimation , 2014, Comput. Stat. Data Anal..

[4]  Li-Wei Lin,et al.  A spatial rank–based multivariate EWMA chart for monitoring process shape matrices , 2019, Qual. Reliab. Eng. Int..

[5]  Fugee Tsung,et al.  A control scheme for monitoring process covariance matrices with more variables than observations , 2018, Qual. Reliab. Eng. Int..

[6]  John C. Young,et al.  Monitoring Variation in a Multivariate Process When the Dimension is Large Relative to the Sample Size , 2009 .

[7]  Douglas M. Hawkins,et al.  Self-Starting Multivariate Control Charts for Location and Scale , 2011 .

[8]  Stelios Psarakis,et al.  Multivariate statistical process control charts: an overview , 2007, Qual. Reliab. Eng. Int..

[9]  Arthur B. Yeh,et al.  Monitoring multivariate process variability with individual observations via penalised likelihood estimation , 2012 .

[10]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[11]  Jimoh Olawale Ajadi,et al.  Should observations be grouped for effective monitoring of multivariate process variability? , 2019, Qual. Reliab. Eng. Int..

[12]  D. Hawkins Multivariate quality control based on regression-adjusted variables , 1991 .

[13]  Zhonghua Li,et al.  A multivariate control chart for simultaneously monitoring process mean and variability , 2010, Comput. Stat. Data Anal..

[14]  Seyed Taghi Akhavan Niaki,et al.  Multivariate variability monitoring using EWMA control charts based on squared deviation of observations from target , 2011, Qual. Reliab. Eng. Int..

[15]  Maman Abdurachman Djauhari A Multivariate Process Variability Monitoring Based on Individual Observations , 2010 .

[16]  Alexandre d'Aspremont,et al.  First-Order Methods for Sparse Covariance Selection , 2006, SIAM J. Matrix Anal. Appl..

[17]  Longcheen Huwang,et al.  A Multivariate Sign Chart for Monitoring Process Shape Parameters , 2013 .

[18]  Seyed Taghi Akhavan Niaki,et al.  New control charts for monitoring covariance matrix with individual observations , 2009, Qual. Reliab. Eng. Int..

[19]  J. Healy A note on multivariate CUSUM procedures , 1987 .

[20]  Edgard M. Maboudou-Tchao,et al.  A LASSO Chart for Monitoring the Covariance Matrix , 2013 .

[21]  W. Schmid,et al.  CUSUM control schemes for monitoring the covariance matrix of multivariate time series , 2017 .

[22]  David E. Tyler,et al.  Tests and estimates of shape based on spatial signs and ranks , 2009 .

[23]  George C. Runger,et al.  Comparison of multivariate CUSUM charts , 1990 .

[24]  J Junyi Zhang,et al.  Cumulative sum control charts for covariance matrix , 2000 .

[25]  Abdel Magid Hamouda,et al.  Control charts for variability monitoring in high-dimensional processes , 2019, Comput. Ind. Eng..

[26]  Ming-Wei Lu,et al.  MULTIVARIATE CONTROL CHART , 2001 .

[27]  Shing I. Chang,et al.  Multivariate EWMA control charts using individual observations for process mean and variance monitoring and diagnosis , 2008 .

[28]  Peihua Qiu,et al.  Multivariate Statistical Process Control Using LASSO , 2009 .

[29]  Douglas M. Hawkins,et al.  Multivariate Exponentially Weighted Moving Covariance Matrix , 2008, Technometrics.

[30]  M. A. Graham,et al.  Nonparametric (distribution-free) control charts: An updated overview and some results , 2019, Quality Engineering.

[31]  Charles W. Champ,et al.  A multivariate exponentially weighted moving average control chart , 1992 .

[32]  Edgard M. Maboudou-Tchao,et al.  Monitoring the covariance matrix with fewer observations than variables , 2013, Comput. Stat. Data Anal..

[33]  Wook-Yeon Hwang,et al.  Chi-Square quantile-based multivariate variance monitoring for individual observations , 2017, Commun. Stat. Simul. Comput..

[34]  Jinyu Fan,et al.  Monitoring multivariate process variability via eigenvalues , 2017, Comput. Ind. Eng..

[35]  Arthur B. Yeh,et al.  Multivariate Control Charts for Monitoring Covariance Matrix: A Review , 2006 .

[36]  Manabu Kano,et al.  Statistical process monitoring based on dissimilarity of process data , 2002 .

[37]  Li-Wei Lin,et al.  An EWMA chart for monitoring the covariance matrix of a multivariate process based on dissimilarity index , 2017, Qual. Reliab. Eng. Int..

[38]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[39]  R. Crosier Multivariate generalizations of cumulative sum quality-control schemes , 1988 .

[40]  Fugee Tsung,et al.  A new multivariate EWMA scheme for monitoring covariance matrices , 2014 .

[41]  Smiley W. Cheng,et al.  Multivariate Max-CUSUM Chart , 2005 .

[42]  E. Santos-Fernández Multivariate Control Charts , 2012 .

[43]  John Yearwood,et al.  Exponentially weighted control charts to monitor multivariate process variability for high dimensions , 2017, Int. J. Prod. Res..

[44]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[45]  Liang. Qu New control charts for monitoring frequency and magnitude of critical events , 2013 .

[46]  Michael B. C. Khoo,et al.  Multivariate Control Chart for Process Dispersion Based on Individual Observations , 2003 .

[47]  Chien-Wei Wu,et al.  Monitoring Multivariate Process Variability for Individual Observations , 2007 .

[48]  H. Hotelling Multivariate Quality Control-illustrated by the air testing of sample bombsights , 1947 .

[49]  Shuguang Huang,et al.  An adaptive multivariate CUSUM control chart for signaling a range of location shifts , 2016 .

[50]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[51]  J. Alfaro,et al.  A new multivariate variability control chart based on a covariance matrix combination , 2018, Applied Stochastic Models in Business and Industry.

[52]  Wolfgang Schmid,et al.  Monitoring the cross-covariances of a multivariate time series , 2005 .

[53]  John C. Young,et al.  Decomposition of Scatter Ratios Used in Monitoring Multivariate Process Variability , 2010 .

[54]  Shing I. Chang,et al.  An Adaptive Multivariate Control Chart for Individual Observations with Adaptive EWMS Star Glyphs for Diagnosis , 2012 .

[55]  V. Pawlowsky-Glahn,et al.  Compositional data analysis : theory and applications , 2011 .

[56]  Chien-Wei Wu,et al.  A multivariate EWMA control chart for monitoring process variability with individual observations , 2005 .

[57]  Arthur B. Yeh,et al.  Monitoring the covariance matrix via penalized likelihood estimation , 2013 .

[58]  Fah Fatt Gan,et al.  A CUMULATIVE SUM CONTROL CHART FOR MONITORING PROCESS VARIANCE , 1995 .

[59]  José-Luis Guerrero-Cusumano,et al.  Testing Variability in Multivariate Quality Control: A Conditional Entropy Measure Approach , 1995, Inf. Sci..