Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis

Ubiquitin modification is mediated by a large family of specificity determining ubiquitin E3 ligases. To facilitate ubiquitin transfer, RING E3 ligases bind both substrate and a ubiquitin E2 conjugating enzyme linked to ubiquitin via a thioester bond, but the mechanism of transfer has remained elusive. Here we report the crystal structure of the dimeric RING domain of rat RNF4 in complex with E2 (UbcH5A) linked by an isopeptide bond to ubiquitin. While the E2 contacts a single protomer of the RING, ubiquitin is folded back onto the E2 by contacts from both RING protomers. The carboxy-terminal tail of ubiquitin is locked into an active site groove on the E2 by an intricate network of interactions, resulting in changes at the E2 active site. This arrangement is primed for catalysis as it can deprotonate the incoming substrate lysine residue and stabilize the consequent tetrahedral transition-state intermediate.

[1]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[2]  C. Day,et al.  RINGs hold the key to ubiquitin transfer. , 2012, Trends in biochemical sciences.

[3]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[4]  M. Tatham,et al.  A fluorescence-resonance-energy-transfer-based protease activity assay and its use to monitor paralog-specific small ubiquitin-like modifier processing. , 2007, Analytical biochemistry.

[5]  Liewei Wang,et al.  Sumoylation of MDC1 is important for proper DNA damage response , 2012, The EMBO journal.

[6]  V. Dixit,et al.  Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. , 2010, Molecular cell.

[7]  C. W. Liew,et al.  RING domain dimerization is essential for RNF4 function. , 2010, The Biochemical journal.

[8]  Edward P. Morris,et al.  Structural basis for the subunit assembly of the anaphase-promoting complex , 2011, Nature.

[9]  C. Ptak,et al.  Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. , 2001, Structure.

[10]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[11]  Richard S. Rogers,et al.  A conserved catalytic residue in the ubiquitin‐conjugating enzyme family , 2003, The EMBO journal.

[12]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[13]  Vincent B. Chen,et al.  MolProbity: all-atom structure validation for macromolecular crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[14]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[15]  J. Naismith,et al.  Mechanism of ubiquitylation by dimeric RING ligase RNF4 , 2011, Nature Structural &Molecular Biology.

[16]  Garib N. Murshudov,et al.  JLigand: a graphical tool for the CCP4 template-restraint library , 2012, Acta crystallographica. Section D, Biological crystallography.

[17]  J. Pruneda,et al.  Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzyme∼ubiquitin conjugate. , 2011, Biochemistry.

[18]  A. Ciechanover,et al.  Non-canonical ubiquitin-based signals for proteasomal degradation , 2012, Journal of Cell Science.

[19]  David Reverter,et al.  Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex , 2005, Nature.

[20]  John Kuriyan,et al.  The Mechanism of Linkage-Specific Ubiquitin Chain Elongation by a Single-Subunit E2 , 2011, Cell.

[21]  M. Mann,et al.  Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry , 2008, Nature Methods.

[22]  P. Cohen,et al.  Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. , 2005, Molecular cell.

[23]  C. Bugg,et al.  Structure of ubiquitin refined at 1.8 A resolution. , 1987, Journal of molecular biology.

[24]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[25]  M. Mann,et al.  In-gel digestion for mass spectrometric characterization of proteins and proteomes , 2006, Nature Protocols.

[26]  Keiji Tanaka,et al.  Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-assembled E2~Ub conjugates. , 2010, Structure.

[27]  J. Corn,et al.  Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex , 2011, The EMBO journal.

[28]  D. Hoyt,et al.  A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. , 2006, Molecular cell.

[29]  C. Lima,et al.  Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway , 2006, Nature Structural &Molecular Biology.

[30]  C. Lima,et al.  Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. , 2009, Molecular cell.

[31]  S. Jackson,et al.  RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. , 2012, Genes & development.

[32]  M. Lei,et al.  Arsenic degrades PML or PML–RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway , 2008, Nature Cell Biology.

[33]  M. Tatham,et al.  RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation , 2008, Nature Cell Biology.

[34]  Jaclyn R. Gareau,et al.  Determinants of Small Ubiquitin-like Modifier 1 (SUMO1) Protein Specificity, E3 Ligase, and SUMO-RanGAP1 Binding Activities of Nucleoporin RanBP2* , 2011, The Journal of Biological Chemistry.

[35]  Steven M. Lewis,et al.  Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. , 2011, Molecular cell.

[36]  Brigitte Maurer,et al.  Modulation of K11-linkage formation by variable loop residues within UbcH5A. , 2011, Journal of molecular biology.

[37]  R. Hay,et al.  SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. , 2012, Genes & development.

[38]  B. Schulman,et al.  A RING E3–substrate complex poised for ubiquitin-like protein transfer: structural insights into cullin-RING ligases , 2011, Nature Structural &Molecular Biology.

[39]  D. Vaux,et al.  Structures of the cIAP2 RING Domain Reveal Conformational Changes Associated with Ubiquitin-conjugating Enzyme (E2) Recruitment* , 2008, Journal of Biological Chemistry.

[40]  J. Schwabe,et al.  The IDOL-UBE2D complex mediates sterol-dependent degradation of the LDL receptor. , 2011, Genes & development.

[41]  Robert C Piper,et al.  Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. , 2009, Molecular cell.