Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition

[1]  J. Stoye,et al.  Retrotransposons, Endogenous Retroviruses, and the Evolution of Retroelements , 1997 .

[2]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[3]  Alan M. Lambowitz,et al.  Efficient integration of an intron RNA into double-stranded DNA by reverse splicing , 1996, Nature.

[4]  H. Hohjoh,et al.  Cytoplasmic ribonucleoprotein complexes containing human LINE‐1 protein and RNA. , 1996, The EMBO journal.

[5]  A. Lambowitz,et al.  A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility , 1995, Cell.

[6]  P. Perlman,et al.  Group II intron mobility occurs by target DNA-primed reverse transcription , 1995, Cell.

[7]  T. Eickbush,et al.  RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element , 1995, Molecular and cellular biology.

[8]  C. Robson,et al.  Site-directed mutagenesis of the human DNA repair enzyme HAP1: identification of residues important for AP endonuclease and RNase H activity. , 1995, Nucleic acids research.

[9]  J. V. Moran,et al.  Mobile group II introns of yeast mitochondrial DNA are novel site-specific retroelements , 1995, Molecular and cellular biology.

[10]  John A. Tainer,et al.  Structure and function of the multifunctional DNA-repair enzyme exonuclease III , 1995, Nature.

[11]  C. Alonso,et al.  Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: homology of the first ORF with the ape family of DNA repair enzymes. , 1995, Journal of molecular biology.

[12]  A. Smit,et al.  Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. , 1995, Journal of molecular biology.

[13]  S. Inouye,et al.  The role of ribonuclease H in multicopy single-stranded DNA synthesis in retron-Ec73 and retron-Ec107 of Escherichia coli , 1995, Journal of bacteriology.

[14]  J. Tainer,et al.  Identification of critical active-site residues in the multifunctional human DNA repair enzyme HAP1 , 1995, Nature Structural Biology.

[15]  B. Meunier,et al.  Homing of a group II intron in yeast mitochondrial DNA is accompanied by unidirectional co‐conversion of upstream‐located markers. , 1994, The EMBO journal.

[16]  J. Boeke,et al.  An in vivo assay for the reverse transcriptase of human retrotransposon L1 in Saccharomyces cerevisiae , 1994, Molecular and cellular biology.

[17]  J. V. Moran,et al.  Splicing defective mutants of the COXI gene of yeast mitochondrial DNA: initial definition of the maturase domain of the group II intron aI2. , 1994, Nucleic acids research.

[18]  R. Roberts An amazing distortion in DNA induced by a methyltransferase. , 1994, Bioscience reports.

[19]  H. Kazazian,et al.  A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion , 1994, Nature Genetics.

[20]  Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. , 1994, Molecular and cellular biology.

[21]  R. Roberts,et al.  Hhal methyltransferase flips its target base out of the DNA helix , 1994, Cell.

[22]  L. Liu,et al.  Hypernegative supercoiling of the DNA template during transcription elongation in vitro. , 1994, The Journal of biological chemistry.

[23]  A. Lambowitz,et al.  The mauriceville plasmid reverse transcriptase can initiate cDNA synthesis de novo and may be related to reverse transcriptase and DNA polymerase progenitor , 1993, Cell.

[24]  H. Wang,et al.  Reverse transcription of the Mauriceville plasmid of Neurospora. Lack of ribonuclease H activity associated with the reverse transcriptase and possible use of mitochondrial ribonuclease H. , 1993, The Journal of biological chemistry.

[25]  H. Nishio,et al.  Insertion of a 5' truncated L1 element into the 3' end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. , 1993, The Journal of clinical investigation.

[26]  J. V. Moran,et al.  Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria , 1993, Cell.

[27]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[28]  K. Kinzler,et al.  Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. , 1992, Cancer research.

[29]  A. F. Scott,et al.  Isolation of an active human transposable element. , 1991, Science.

[30]  J. Boeke,et al.  Reverse transcriptase encoded by a human transposable element. , 1991, Science.

[31]  S. Martin,et al.  Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells , 1991, Molecular and cellular biology.

[32]  T. Eickbush,et al.  Origin and evolution of retroelements based upon their reverse transcriptase sequences. , 1990, The EMBO journal.

[33]  J. Kinsey Tad, a LINE-like transposable element of Neurospora, can transpose between nuclei in heterokaryons. , 1990, Genetics.

[34]  Y. Sakaki,et al.  Selective cloning and sequence analysis of the human L1 (LINE-1) sequences which transposed in the relatively recent past. , 1990, Nucleic acids research.

[35]  P. Abad,et al.  A long interspersed repetitive element--the I factor of Drosophila teissieri--is able to transpose in different Drosophila species. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Antonarakis,et al.  Characterization of a nondeleterious L1 insertion in an intron of the human factor VIII gene and further evidence of open reading frames in functional L1 elements. , 1989, Genomics.

[37]  Y. Tsao,et al.  Transcription-driven supercoiling of DNA: Direct biochemical evidence from in vitro studies , 1989, Cell.

[38]  Arlen W. Johnson,et al.  Yeast DNA 3'-repair diesterase is the major cellular apurinic/apyrimidinic endonuclease: substrate specificity and kinetics. , 1988, The Journal of biological chemistry.

[39]  D. Suck,et al.  Structure refined to 2Å of a nicked DNA octanucleotide complex with DNase I , 1988, Nature.

[40]  S. Antonarakis,et al.  Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man , 1988, Nature.

[41]  M F Singer,et al.  LINE-1: a mammalian transposable element. , 1987, Biochimica et biophysica acta.

[42]  H. Saedler,et al.  Cin4, an insert altering the structure of the A1 gene in Zea mays, exhibits properties of nonviral retrotransposons , 1987, The EMBO journal.

[43]  A. F. Scott,et al.  Origin of the human L1 elements: Proposed progenitor genes deduced from a consensus DNA sequence☆ , 1987, Genomics.

[44]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[45]  T. Tullius,et al.  The unusual conformation adopted by the adenine tracts in kinetoplast DNA , 1987, Cell.

[46]  H. Varmus Reverse transcription. , 1987, Scientific American.

[47]  D. Suck,et al.  Crystallographic refinement and structure of DNase I at 2 A resolution. , 1986, Journal of molecular biology.

[48]  R. Wells,et al.  A highly bent fragment of Crithidia fasciculata kinetoplast DNA. , 1986, The Journal of biological chemistry.

[49]  F. Michel,et al.  Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses , 1985, Nature.

[50]  R. Paro,et al.  The molecular basis of I-R hybrid Dysgenesis in drosophila melanogaster: Identification, cloning, and properties of the I factor , 1984, Cell.

[51]  N. Stellwagen Anomalous electrophoresis of deoxyribonucleic acid restriction fragments on polyacrylamide gels. , 1983, Biochemistry.

[52]  D. Lilley,et al.  Hairpin-loop formation by inverted repeats in supercoiled DNA is a local and transmissible property. , 1981, Nucleic acids research.

[53]  R. Sinden,et al.  Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. Sinden,et al.  Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells: Analogous measurements in insect and human cells , 1980, Cell.

[55]  D. Pettijohn,et al.  Supercoils in prokaryotic DNA restrained in vivo. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[56]  B. Weiss Endonuclease II of Escherichia coli is exonuclease III. , 1976, The Journal of biological chemistry.

[57]  P. Price The essential role of Ca2+ in the activity of bovine pancreatic deoxyribonuclease. , 1975, The Journal of biological chemistry.

[58]  I. R. Lehnman,et al.  DNA Ligase: Structure, Mechanism, and Function , 1974, Science.