Failure processes in elastic fiber bundles

The fiber bundle model describes a collection of elastic fibers under load. The fibers fail successively and, for each failure, the load distribution among the surviving fibers changes. Even though very simple, this model captures the essentials of failure processes in a large number of materials and settings. A review of the fiber bundle model is presented with different load redistribution mechanisms from the point of view of statistics and statistical physics rather than materials science, with a focus on concepts such as criticality, universality, and fluctuations. The fiber bundle model is discussed as a tool for understanding phenomena such as creep and fatigue and how it is used to describe the behavior of fiber-reinforced composites as well as modeling, e.g., network failure, traffic jams, and earthquake dynamics.

[1]  A Vespignani,et al.  Avalanches in breakdown and fracture processes. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[3]  S. Leigh Phoenix,et al.  The asymptotic strength distribution of a general fiber bundle , 1973, Advances in Applied Probability.

[4]  Ferenc Kun,et al.  Creep rupture of viscoelastic fiber bundles. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  A. Hansen,et al.  Crossover behavior in failure avalanches. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  S. Leigh Phoenix,et al.  STATISTICS OF FRACTURE FOR AN ELASTIC NOTCHED COMPOSITE LAMINA CONTAINING WEIBULL FIBERS-PART I. FEATURES FROM MONTE-CARLO SIMULATION , 1997 .

[7]  S. Suresh Fatigue of materials , 1991 .

[8]  S. Toffoli,et al.  Determination of Individual Fiber Failure in Fiber Bundles , 2001 .

[9]  Alex Hansen,et al.  Fourier acceleration of iterative processes in disordered systems , 1988 .

[10]  Chad M. Landis,et al.  A shear-lag model for a broken fiber embedded in a composite with a ductile matrix , 1999 .

[11]  Vistasp M Karbhari,et al.  Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[12]  S. L. Phoenix,et al.  The Chain-of-Bundles Probability Model for the Strength of Fibrous Materials II: A Numerical Study of Convergence , 1978 .

[13]  Subcourse Dental materials. , 1977, British dental journal.

[14]  S. Leigh Phoenix,et al.  Stochastic strength and fatigue of fiber bundles , 1978, International Journal of Fracture.

[15]  Didier Sornette Mean-field solution of a block-spring model of earthquakes , 1992 .

[16]  Richard L. Smith,et al.  A probability model for fibrous composites with local load sharing , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  Burst process of stretched fiber bundles. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Alessandro Vespignani,et al.  Experimental evidence for critical dynamics in microfracturing processes. , 1994, Physical review letters.

[19]  C. Scholz The Mechanics of Earthquakes and Faulting , 1990 .

[20]  Bernard D. Coleman,et al.  Time Dependence of Mechanical Breakdown Phenomena , 1956 .

[21]  M. Deighton Fracture of Brittle Solids , 1976 .

[22]  Didier Sornette,et al.  The Physical Origin of the Coffin-Manson Law in Low-Cycle Fatigue , 1992 .

[23]  F. Kun,et al.  Size scaling and bursting activity in thermally activated breakdown of fiber bundles. , 2008, Physical review letters.

[24]  W. Curtin,et al.  Strength and reliability of notched fiber-reinforced composites , 1997 .

[25]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[26]  Feng,et al.  Rate of microcrack nucleation. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[27]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[28]  Ziyou Gao,et al.  EXTENDED FIBER BUNDLE MODEL FOR TRAFFIC JAMS ON SCALE-FREE NETWORKS , 2008 .

[29]  R. Stinchcombe Flow on regular and disordered networks , 2005 .

[30]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[31]  John M. Hedgepeth,et al.  Local Stress Concentrations in Imperfect Filamentary Composite Materials , 1967 .

[32]  T. Okabe,et al.  Green"s function vs. shear-lag models of damage and failure in fiber composites , 2002 .

[33]  Srutarshi Pradhan,et al.  Precursors of catastrophe in the Bak-Tang-Wiesenfeld, Manna, and random-fiber-bundle models of failure. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  E. M. Lifshitz,et al.  Theory of Elasticity: Vol. 7 of Course of Theoretical Physics , 1960 .

[35]  Bikas K. Chakrabarti,et al.  Book Review: Statistical Physics of Fracture and Breakdown in Disordered Systems , 1997 .

[36]  Relaxation dynamics in strained fiber bundles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Arbabi,et al.  Percolation and fracture in disordered solids and granular media: Approach to a fixed point. , 1992, Physical review letters.

[38]  A. Evans,et al.  Matrix fracture in fiber-reinforced ceramics , 1986 .

[39]  Piazza,et al.  Acoustic emission from volcanic rocks: An example of self-organized criticality. , 1991, Physical review letters.

[40]  William A. Curtin,et al.  Failure of fiber composites: A lattice Green function model , 1995 .

[41]  H. L. Cox The elasticity and strength of paper and other fibrous materials , 1952 .

[42]  Tove Jacobsen,et al.  Large scale bridging in compos-ites: R-curve and bridging laws , 1998 .

[43]  Bernard D. Coleman,et al.  Time Dependence of Mechanical Breakdown in Bundles of Fibers. I. Constant Total Load , 1957 .

[44]  Chad M. Landis,et al.  Micromechanical simulation of the failure of fiber reinforced composites , 2000 .

[45]  A. Evans,et al.  Tensile and flexural ultimate strength of fiber-reinforced ceramic-matrix composites. , 1994 .

[46]  A. Sastry,et al.  Load redistribution near non-aligned fibre breaks in a two-dimensional unidirectional composite using break-influence superposition , 1993 .

[47]  D. Turcotte,et al.  An exact renormalization model for earthquakes and material failure: statics and dynamics , 1994 .

[48]  S. L. Phoenix,et al.  Probability distributions for the strength of composite materials II: A convergent sequence of tight bounds , 1981 .

[49]  C. Hsueh Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites VII:improved analyses for bonded interfaces , 1992 .

[50]  Rava da Silveira Comment on ``Tricritical Behavior in Rupture Induced by Disorder'' , 1998 .

[51]  A. Dutta,et al.  FIBERS ON A GRAPH WITH LOCAL LOAD SHARING , 2006, cond-mat/0612384.

[52]  William I. Newman,et al.  Failure of hierarchical distributions of fibre bundles. I , 1991, International Journal of Fracture.

[53]  Ferenc Kun,et al.  Scaling laws of creep rupture of fiber bundles. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  H. Daniels The statistical theory of the strength of bundles of threads. I , 1945, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[55]  D. Turcotte,et al.  A damage model for the continuum rheology of the upper continental crust , 2004 .

[56]  H. Wagner,et al.  Stress concentrations caused by fiber failure in two-dimensional composites , 1999 .

[57]  J. Barbera,et al.  Contact mechanics , 1999 .

[58]  S. Leigh Phoenix,et al.  Statistics of fracture for an elastic notched composite lamina containing weibull fibers—Part II. Probability models of crack growth , 1997 .

[59]  H. Wagner,et al.  Stress concentration factors in two-dimensional composites: effects of material and geometrical parameters , 1993 .

[60]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[61]  M. Sahimi,et al.  Scaling Laws for Fracture of Heterogeneous Materials and Rock. , 1996, Physical review letters.

[62]  S. Zapperi,et al.  Discrete fracture model with anisotropic load sharing , 2008, 0802.3003.

[63]  Bikas K. Chakrabarti A fiber bundle model of traffic jams , 2006 .

[64]  D. Little,et al.  Characterization of microdamage and healing of asphalt concrete mixtures , 2002 .

[65]  Critical fatigue behaviour in brittle glasses , 2001 .

[66]  S. Phoenix The asymptotic distribution for the time to failure of a fiber bundle , 1979, Advances in Applied Probability.

[67]  F. Kun,et al.  Universality class of fiber bundles with strong heterogeneities , 2008, 0802.2695.

[68]  Failure properties of loaded fiber bundles having a lower cutoff in fiber threshold distribution. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  A. Hansen,et al.  The Distribution of Simultaneous Fiber Failures in Fiber Bundles , 1992 .

[70]  William A. Curtin,et al.  Multiscale modeling of damage and failure in aluminum-matrix composites , 2001 .

[71]  The effect of disorder on the fracture nucleation process , 2001, cond-mat/0108514.

[72]  Bent F. Sørensen,et al.  Crack growth in composites Applicability of R-curves and bridging laws , 2000 .

[74]  S. Roux,et al.  Early Stages of Rupture of Disordered Materials , 1990 .

[75]  A. Sastry,et al.  Comparison of shear-lag theory and continuum fracture mechanics for modeling fiber and matrix stresses in an elastic cracked composite lamina , 1996 .

[76]  A. Dutta,et al.  Random fiber bundle with many discontinuities in the threshold distribution. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  H. Stanley,et al.  FIRST-ORDER TRANSITION IN THE BREAKDOWN OF DISORDERED MEDIA , 1996, cond-mat/9612095.

[78]  Duxbury,et al.  Exactly solvable models of material breakdown. , 1994, Physical review. B, Condensed matter.

[79]  J. Schmittbuhl,et al.  Dynamical event during slow crack propagation. , 2001, Physical review letters.

[80]  A. Hansen,et al.  Crossover behavior in burst avalanches: signature of imminent failure. , 2005, Physical review letters.

[81]  A. Hansen Statistical Models for the Fracture of Disordered Media , 1990 .

[82]  Bikas K. Chakrabarti,et al.  FAILURE PROPERTIES OF FIBER BUNDLE MODELS , 2003 .

[83]  S. Roux,et al.  On the Relevance of Mean Field to Continuum Damage Mechanics , 2002 .

[84]  Bernard D. Coleman,et al.  Time Dependence of Mechanical Breakdown in Bundles of Fibers. II. The Infinite Ideal Bundle under Linearly Increasing Loads , 1957 .

[85]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[86]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[87]  Beom Jun Kim,et al.  Universality class of the fiber bundle model on complex networks. , 2005, Physical review letters.

[88]  Chad M. Landis,et al.  Shear-lag model for failure simulations of unidirectional fiber composites including matrix stiffness , 1999 .

[89]  Hansen,et al.  Fourier acceleration of relaxation processes in disordered systems. , 1986, Physical review letters.

[90]  S. L. Phoenix,et al.  Asymptotic Distributions for the Failure of Fibrous Materials Under Series-Parallel Structure and Equal Load-Sharing , 1981 .

[91]  Jean Schmittbuhl,et al.  Direct Observation of a Self-Affine Crack Propagation , 1997 .

[92]  L. N. McCartney,et al.  Statistical Theory of the Strength of Fiber Bundles , 1983 .

[93]  W. I. Newman,et al.  Time-dependent fiber bundles with local load sharing. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  D. Sornette,et al.  Andrade and critical time-to-failure laws in fiber-matrix composites: Experiments and model , 2005 .

[95]  Fatigue failure of disordered materials , 2007 .

[96]  H. E. Daniels,et al.  The maximum of a Gaussian process whose mean path has a maximum, with an application to the strength of bundles of fibres , 1989, Advances in Applied Probability.

[97]  A. Sastry,et al.  A mechanical model for collagen fibril load sharing in peripheral nerve of diabetic and nondiabetic rats. , 2004, Journal of biomechanical engineering.

[98]  Duality and phase diagram of one-dimensional transport , 2006, cond-mat/0604444.

[99]  W. Curtin SIZE SCALING OF STRENGTH IN HETEROGENEOUS MATERIALS , 1998 .

[100]  D. Sornette,et al.  Tricritical Behavior in Rupture Induced by Disorder , 1997 .

[101]  Bruce E. Shaw,et al.  Dynamics of earthquake faults , 1993, adap-org/9307001.

[102]  G. Gibson Plastics, Rubber and Composites , 2007 .

[103]  Leon Mishnaevsky,et al.  Computational mesomechanics of composites , 2007 .

[104]  Beom Jun Kim Phase transition in the modified fiber bundle model , 2004 .

[105]  Leon Mishnaevsky,et al.  Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites: A review , 2009 .

[106]  Bikas K. Chakrabarti,et al.  Modelling critical and catastrophic phenomena in geoscience : a statistical physics approach , 2006 .

[107]  Roux Thermally activated breakdown in the fiber-bundle model , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[108]  Riccardo Scorretti,et al.  Disorder enhances the effects of thermal noise in the fiber bundle model , 2001 .

[109]  L. An,et al.  Stress transfer and damage evolution simulations of fiber-reinforced polymer-matrix composites , 2006 .

[110]  R C Hidalgo,et al.  Bursts in a fiber bundle model with continuous damage. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[112]  An introduction to breakdown phenomena in disordered systems , 1999, cond-mat/0008174.

[113]  D. Sornette Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , 2000 .

[114]  E. Ding,et al.  Burst-size distribution in fiber-bundles with local load-sharing , 1994 .

[115]  Numerical simulations of burst processes in fibre bundles , 1995 .

[116]  S. L. Phoenix,et al.  Recursions and limit theorems for the strength and lifetime distributions of a fibrous composite , 1987, Journal of Applied Probability.

[117]  S. Ciliberto,et al.  An experimental test of the critical behaviour of fracture precursors , 1998 .

[118]  Effect of discontinuity in the threshold distribution on the critical behavior of a random fiber bundle. , 2007 .

[119]  D. Lagoudas,et al.  Time evolution of overstress profiles near broken fibers in a composite with a viscoelastic matrix , 1989 .

[120]  Ding,et al.  Failure of fiber bundles with local load sharing. , 1996, Physical review. B, Condensed matter.

[121]  Y. Moreno,et al.  Instability of scale-free networks under node-breaking avalanches , 2001 .

[122]  Bonn,et al.  Delayed fracture of an inhomogeneous soft solid , 1998, Science.

[123]  Heterogeneous interfacial failure between two elastic blocks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[124]  The pure flaw model for chopped fibre composites , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[125]  A model for complex aftershock sequences , 2000, cond-mat/0012058.

[126]  P. C. Hemmer,et al.  BURST AVALANCHES IN SOLVABLE MODELS OF FIBROUS MATERIALS , 1997 .

[127]  M. Choi,et al.  Criticality in the dynamic failure model , 2008 .

[128]  Meunier,et al.  Instantaneous and time-lag breaking of a two-dimensional solid rod under a bending stress. , 1993, Physical review letters.

[129]  Y Moreno,et al.  Fracture and second-order phase transitions. , 2000, Physical review letters.

[130]  D. Sornette Elasticity and failure of a set of elements loaded in parallel , 1989 .

[131]  Ferenc Kun,et al.  Fracture model with variable range of interaction. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[132]  Alex Hansen,et al.  Burst avalanches in bundles of fibers: Local versus global load-sharing , 1994 .

[133]  P. Bhattacharyya,et al.  Phase transition in fiber bundle models with recursive dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[134]  H. Wagner,et al.  Fragmentation of two-fiber hybrid microcomposites: stress concentration factors and interfacial adhesion , 2000 .

[135]  Jay R. Lund,et al.  LEONARDO DA VINCI'S TENSILE STRENGTH TESTS: IMPLICATIONS FOR THE DISCOVERY OF ENGINEERING MECHANICS , 2001 .

[136]  S. Pradhan,et al.  Breaking-rate minimum predicts the collapse point of overloaded materials. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[137]  William A. Curtin,et al.  Strength and reliability of fiber-reinforced composites: Localized load-sharing and associated size effects , 1997 .

[138]  François Hild,et al.  Ultimate strength properties of fiber-reinforced composites , 1997 .

[139]  Failure avalanches in fiber bundles for discrete load increase. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[140]  W. Curtin,et al.  TIME-DEPENDENT DAMAGE EVOLUTION AND FAILURE IN MATERIALS. I. THEORY , 1997 .

[141]  I. Beyerlein,et al.  Time evolution of stress redistribution around multiple fiber breaks in a composite with viscous and viscoelastic matrices , 1998 .

[142]  Failure time and microcrack nucleation , 1999, cond-mat/9905161.

[143]  William A. Curtin,et al.  THEORY OF MECHANICAL-PROPERTIES OF CERAMIC-MATRIX COMPOSITES , 1991 .

[144]  William A. Curtin,et al.  THE TOUGH TO BRITTLE TRANSITION IN BRITTLE MATRIX COMPOSITES , 1993 .

[145]  P. C. Hemmer,et al.  Energy bursts in fiber bundle models of composite materials. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[146]  Risto M. Nieminen,et al.  Does the shear-lag model apply to random fiber networks? , 1997 .

[147]  C. Hsueh,et al.  Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites , 1990 .

[148]  S. L. Phoenix,et al.  A statistical model for the time dependent failure of unidirectional composite materials under local elastic load-sharing among fibers , 1983 .

[149]  Stefano Zapperi,et al.  Damage in fiber bundle models , 2000 .

[150]  B K Chakrabarti,et al.  Dynamic critical behavior of failure and plastic deformation in the random fiber bundle model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[151]  Y. Moreno,et al.  Phase transitions in load transfer models of fracture , 2001 .

[152]  Pacheco,et al.  Solvable fracture model with local load transfer. , 1993, Physical review letters.

[153]  A. Schadschneider,et al.  Statistical physics of vehicular traffic and some related systems , 2000, cond-mat/0007053.

[154]  Antonio Politi,et al.  Failure time in the fiber-bundle model with thermal noise and disorder. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[155]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[156]  R. L. Smith,et al.  A comparison of probabilistic techniques for the strength of fibrous materials under local load-sharing among fibers☆ , 1983 .

[157]  S. Ciliberto,et al.  The cooperative effect of load and disorder in thermally activated rupture of a two-dimensional random fuse network , 2006, cond-mat/0606798.

[158]  Yongqi Li,et al.  Crack Initiation Model from Asphalt Slab Tests , 2002 .

[159]  Alex Hansen,et al.  Crossover behavior in a mixed-mode fiber bundle model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[160]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[161]  Failure due to fatigue in fiber bundles and solids. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[162]  Alessandro Vespignani,et al.  Analysis of damage clusters in fracture processes , 1999 .

[163]  A. Kelly,et al.  Theory of multiple fracture of fibrous composites , 1973 .

[164]  Bikas K. Chakrabarti,et al.  Non-Linearity and Breakdown in Soft Condensed Matter , 1994 .

[165]  Angel Garcimartín,et al.  Statistical Properties of Fracture Precursors , 1997 .

[166]  Michael E. Fisher,et al.  The renormalization group in the theory of critical behavior , 1974 .