Inertial primal-dual algorithms for structured convex optimization
暂无分享,去创建一个
[1] Boris Polyak. Some methods of speeding up the convergence of iteration methods , 1964 .
[2] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .
[3] M. Powell. A method for nonlinear constraints in minimization problems , 1969 .
[4] M. Hestenes. Multiplier and gradient methods , 1969 .
[5] B. Martinet. Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .
[6] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[7] Ronald E. Bruck. Asymptotic convergence of nonlinear contraction semigroups in Hilbert space , 1975 .
[8] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[9] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[10] R. Tyrrell Rockafellar,et al. Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..
[11] Y. Nesterov. A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .
[12] Francesco Zirilli,et al. Algorithm 617: DAFNE: a differential-equations algorithm for nonlinear equations , 1984, ACM Trans. Math. Softw..
[13] Jonathan Eckstein. Splitting methods for monotone operators with applications to parallel optimization , 1989 .
[14] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[15] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[16] Osman Güler,et al. New Proximal Point Algorithms for Convex Minimization , 1992, SIAM J. Optim..
[17] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[18] Raymond H. Chan,et al. A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..
[19] Felipe Alvarez,et al. On the Minimizing Property of a Second Order Dissipative System in Hilbert Spaces , 2000, SIAM J. Control. Optim..
[20] H. Attouch,et al. An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping , 2001 .
[21] A. Antipin,et al. MINIMIZATION OF CONVEX FUNCTIONS ON CONVEX SETS BY MEANS OF DIFFERENTIAL EQUATIONS , 2003 .
[22] A. Moudafi,et al. Approximate inertial proximal methods using the enlargement of maximal monotone operators , 2003 .
[23] ANTONIN CHAMBOLLE,et al. An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.
[24] Felipe Alvarez,et al. Weak Convergence of a Relaxed and Inertial Hybrid Projection-Proximal Point Algorithm for Maximal Monotone Operators in Hilbert Space , 2003, SIAM J. Optim..
[25] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[26] Y. Nesterov. Gradient methods for minimizing composite objective function , 2007 .
[27] A. Moudafi,et al. A proximal method for maximal monotone operators via discretization of a first order dissipative dynamical system , 2007 .
[28] Yin Zhang,et al. Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..
[29] Junfeng Yang,et al. A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..
[30] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[31] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[32] Tony F. Chan,et al. A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..
[33] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[34] Junfeng Yang,et al. A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.
[35] Junfeng Yang,et al. Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..
[36] Shiqian Ma,et al. Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..
[37] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[38] Xiangfeng Wang,et al. The Linearized Alternating Direction Method of Multipliers for Dantzig Selector , 2012, SIAM J. Sci. Comput..
[39] Bingsheng He,et al. On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..
[40] Bingsheng He,et al. Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..
[41] Jonathan Eckstein. Augmented Lagrangian and Alternating Direction Methods for Convex Optimization: A Tutorial and Some Illustrative Computational Results , 2012 .
[42] Deanna Needell,et al. Near-optimal compressed sensing guarantees for anisotropic and isotropic total variation minimization , 2013 .
[43] Junfeng Yang,et al. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization , 2012, Math. Comput..
[44] Deanna Needell,et al. Stable Image Reconstruction Using Total Variation Minimization , 2012, SIAM J. Imaging Sci..
[45] Marc Teboulle,et al. Rate of Convergence Analysis of Decomposition Methods Based on the Proximal Method of Multipliers for Convex Minimization , 2014, SIAM J. Optim..
[46] Shiqian Ma,et al. A general inertial proximal point method for mixed variational inequality problem , 2014, 1407.8238.
[47] Juan Peypouquet,et al. A Dynamical Approach to an Inertial Forward-Backward Algorithm for Convex Minimization , 2014, SIAM J. Optim..
[48] R. Boţ,et al. An inertial alternating direction method of multipliers , 2014, 1404.4582.
[49] Thomas Brox,et al. iPiasco: Inertial Proximal Algorithm for Strongly Convex Optimization , 2015, Journal of Mathematical Imaging and Vision.
[50] Bingsheng He,et al. On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.
[51] Caihua Chen,et al. A General Inertial Proximal Point Algorithm for Mixed Variational Inequality Problem , 2015, SIAM J. Optim..
[52] Radu Ioan Bot,et al. Inertial Douglas-Rachford splitting for monotone inclusion problems , 2014, Appl. Math. Comput..
[53] David Stutz. IPIANO : INERTIAL PROXIMAL ALGORITHM FOR NON-CONVEX OPTIMIZATION , 2016 .
[54] Radu Ioan Bot,et al. An Inertial Tseng’s Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems , 2014, J. Optim. Theory Appl..