Inertial primal-dual algorithms for structured convex optimization

The primal-dual algorithm recently proposed by Chambolle & Pock (abbreviated as CPA) for structured convex optimization is very efficient and popular. It was shown by Chambolle & Pock in \cite{CP11} and also by Shefi & Teboulle in \cite{ST14} that CPA and variants are closely related to preconditioned versions of the popular alternating direction method of multipliers (abbreviated as ADM). In this paper, we further clarify this connection and show that CPAs generate exactly the same sequence of points with the so-called linearized ADM (abbreviated as LADM) applied to either the primal problem or its Lagrangian dual, depending on different updating orders of the primal and the dual variables in CPAs, as long as the initial points for the LADM are properly chosen. The dependence on initial points for LADM can be relaxed by focusing on cyclically equivalent forms of the algorithms. Furthermore, by utilizing the fact that CPAs are applications of a general weighted proximal point method to the mixed variational inequality formulation of the KKT system, where the weighting matrix is positive definite under a parameter condition, we are able to propose and analyze inertial variants of CPAs. Under certain conditions, global point-convergence, nonasymptotic $O(1/k)$ and asymptotic $o(1/k)$ convergence rate of the proposed inertial CPAs can be guaranteed, where $k$ denotes the iteration index. Finally, we demonstrate the profits gained by introducing the inertial extrapolation step via experimental results on compressive image reconstruction based on total variation minimization.

[1]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[2]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[3]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[4]  M. Hestenes Multiplier and gradient methods , 1969 .

[5]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[6]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[7]  Ronald E. Bruck Asymptotic convergence of nonlinear contraction semigroups in Hilbert space , 1975 .

[8]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[9]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[10]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[11]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[12]  Francesco Zirilli,et al.  Algorithm 617: DAFNE: a differential-equations algorithm for nonlinear equations , 1984, ACM Trans. Math. Softw..

[13]  Jonathan Eckstein Splitting methods for monotone operators with applications to parallel optimization , 1989 .

[14]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[15]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[16]  Osman Güler,et al.  New Proximal Point Algorithms for Convex Minimization , 1992, SIAM J. Optim..

[17]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[18]  Raymond H. Chan,et al.  A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..

[19]  Felipe Alvarez,et al.  On the Minimizing Property of a Second Order Dissipative System in Hilbert Spaces , 2000, SIAM J. Control. Optim..

[20]  H. Attouch,et al.  An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping , 2001 .

[21]  A. Antipin,et al.  MINIMIZATION OF CONVEX FUNCTIONS ON CONVEX SETS BY MEANS OF DIFFERENTIAL EQUATIONS , 2003 .

[22]  A. Moudafi,et al.  Approximate inertial proximal methods using the enlargement of maximal monotone operators , 2003 .

[23]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[24]  Felipe Alvarez,et al.  Weak Convergence of a Relaxed and Inertial Hybrid Projection-Proximal Point Algorithm for Maximal Monotone Operators in Hilbert Space , 2003, SIAM J. Optim..

[25]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[26]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[27]  A. Moudafi,et al.  A proximal method for maximal monotone operators via discretization of a first order dissipative dynamical system , 2007 .

[28]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[29]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[30]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[31]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[32]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[33]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[34]  Junfeng Yang,et al.  A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[35]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[36]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[37]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[38]  Xiangfeng Wang,et al.  The Linearized Alternating Direction Method of Multipliers for Dantzig Selector , 2012, SIAM J. Sci. Comput..

[39]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[40]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[41]  Jonathan Eckstein Augmented Lagrangian and Alternating Direction Methods for Convex Optimization: A Tutorial and Some Illustrative Computational Results , 2012 .

[42]  Deanna Needell,et al.  Near-optimal compressed sensing guarantees for anisotropic and isotropic total variation minimization , 2013 .

[43]  Junfeng Yang,et al.  Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization , 2012, Math. Comput..

[44]  Deanna Needell,et al.  Stable Image Reconstruction Using Total Variation Minimization , 2012, SIAM J. Imaging Sci..

[45]  Marc Teboulle,et al.  Rate of Convergence Analysis of Decomposition Methods Based on the Proximal Method of Multipliers for Convex Minimization , 2014, SIAM J. Optim..

[46]  Shiqian Ma,et al.  A general inertial proximal point method for mixed variational inequality problem , 2014, 1407.8238.

[47]  Juan Peypouquet,et al.  A Dynamical Approach to an Inertial Forward-Backward Algorithm for Convex Minimization , 2014, SIAM J. Optim..

[48]  R. Boţ,et al.  An inertial alternating direction method of multipliers , 2014, 1404.4582.

[49]  Thomas Brox,et al.  iPiasco: Inertial Proximal Algorithm for Strongly Convex Optimization , 2015, Journal of Mathematical Imaging and Vision.

[50]  Bingsheng He,et al.  On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.

[51]  Caihua Chen,et al.  A General Inertial Proximal Point Algorithm for Mixed Variational Inequality Problem , 2015, SIAM J. Optim..

[52]  Radu Ioan Bot,et al.  Inertial Douglas-Rachford splitting for monotone inclusion problems , 2014, Appl. Math. Comput..

[53]  David Stutz IPIANO : INERTIAL PROXIMAL ALGORITHM FOR NON-CONVEX OPTIMIZATION , 2016 .

[54]  Radu Ioan Bot,et al.  An Inertial Tseng’s Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems , 2014, J. Optim. Theory Appl..